(+)-Zaragozic Acid C: Synthesis and Related Studies

Erick M. Carreira* and J. Du Bois
Contribution No. 9074 from the Arnold and Mabel Beckman Laboratory for Chemical Synthesis, California Institue of Technology, Pasadena, California 91125

Received March 22, 1995^{*}

Abstract

The asymmetric synthesis of the potent squalene synthase inhibitor (+)-zaragozic acid C is described. The synthesis allows for the preparation of multigram quantities of the dioxabicyclooctane core common to all members of this class of fungal metabolites. Supporting studies include (1) the use of $\left[\mathrm{Cr}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right]_{2}$ for the stereoselective reduction of ynones to trans enones, (2) an investigation of the diastereoselective dihydroxylation of γ-alkoxy- α, β trans enones, and (3) nucleophilic addition of $\mathrm{Me}_{3} \mathrm{SiC} \equiv \mathrm{CLi}$ to a dioxabicyclooctanone, wherein the product diastereoselectivity is observed to vary as a function of cosolvents (tertiary amines) and additives (LiBr). In addition, an acylation protocol is reported which permits the regioselective installation of the $\mathrm{C}(6) \mathrm{O}$-acyl side chain.

Introduction

The zaragozic acids and squalestatins constitute a class of recently isolated fungal metabolites which are important targets for chemical synthesis as a consequence of their complex molecular structure and potent biological activity. ${ }^{1}$ These natural products share a common 2,8-dioxabicyclo[3.2.1]octane core and differ exclusively at the $\mathrm{C}(1)$ alkyl and $\mathrm{C}(6) \mathrm{O}$-acyl side chains. ${ }^{2}$ All members of this family display picomolar inhibition of mammalian squalene synthase, the enzyme responsible for mediating the first committed step in sterol biosynthesis. ${ }^{3}$ Thus, these compounds have potential application as therapeutically useful serum cholesterol-lowering agents. Herein, we provide a detailed account of our synthesis of (+)zaragozic acid C (1, Figure 1). ${ }^{4}$

Background. Zaragozic acids and squalestatins were first isolated in 1991 by research teams working independently at Merck and Glaxo (Figure 2). Zaragozic acid A was extracted

[^0]

Figure 1. (+)-Zaragozic acid C.
from the sterile fungal culture Sporormiella intermedia, while zaragozic acids B and C were isolated from a fungal strain identified as Leptodontium elatius. The three squalestatins were extracted from the fungus Phoma sp. C2932. The structures of these natural products were determined by a combination of chemical degradation and NMR spectroscopy. ${ }^{1.5}$ X-ray crystallographic analysis and exciton-coupled circular dichroism studies on various derivatives confirmed the structural assignments and established the absolute stereochemistry. These molecules are characterized by a novel 4,6,7-trihydroxyl-2,8-dioxabicyclo[3.2.1] octane-3,4,5-tricarboxylic acid core, which has been shown to be biosynthetically derived from succinate and acetate precursors. ${ }^{6}$ Syntheses of partially functionalized model systems of the bicyclic core as well as the preparation of both side chains have been described. ${ }^{7-9}$ Additionally, the asymmetric synthesis

[^1]

Figure 2. Selection of other known zaragozic acids and squalestatins.
of zaragozic acid A /squalestatin S 1 and a second synthesis of $(+)$-zaragozic acid C have been accomplished by Nicolaou and Evans, respectively. ${ }^{10.11}$

Zaragozic acids A, B, and C exhibit potent inhibitory activity toward rat liver squalene synthase, with apparent K_{i} values from 29 to 78 pM . In addition, these fungal metabolites have been shown to effect a decrease in cholesterol synthesis in whole cells (Hep G2) and in mice. ${ }^{16,12}$ The squalestatins display similar efficacy toward both mammalian (rat liver) and microsomal (Candida albicans) squalene synthase. This enzyme is responsible for catalyzing a two-step reaction sequence in which farnesyl pyrophosphate (FPP) is dimerized in a head-tohead manner to form pre-squalene pyrophosphate (PSPP). This cyclopropylcarbinyl pyrophosphate undergoes a series of en-zyme-mediated cationic rearrangements, followed by reduction with NADPH to furnish squalene. ${ }^{13.14}$ It has been shown that

[^2]both biosynthetic steps (dimerization and reductive rearrangement) are inhibited by the zaragozic acids and the squalestatins. The structural homology between these compounds and presqualene pyrophosphate has led to the suggestion that they act by effectively mimicking the binding of PSPP to the enzyme (Figure 3) ${ }^{3 \mathrm{~d} .15}$

Analysis. The retrosynthetic disconnections which formed the basis of our plan for the preparation of zaragozic acid C are illustrated in Scheme 1. Removal of the C(6) O-acyl side chain would provide the $C(6) / C(7)$ diol 6 ; subsequent unraveling of the dioxabicyclic ketal would give a functionalized acyclic precursor. As a consequence of these disconnections, the stereochemical complexity of the dioxabicyclooctane is redefined as a problem in acyclic asymmetric synthesis. At the outset, however, we were concerned that cyclization of a highly functionalized acyclic intermediate (e.g., 5) to the appropriate bicyclic ketal might be complicated by side reactions such as δ - and γ-lactonization, as well as formation of undesired ketal products. ${ }^{16}$ A synthetic route was developed which we hoped would avoid such competing processes. ${ }^{17}$

With these considerations in mind, a plan was developed in which the quaternary center at $C(4)$ would be established following the formation of the dioxabicyclooctane framework.
(13) (a) Poulter, C. D. Acc. Chem. Res. 1990, 23, 70. (b) Poulter, C. D.; Rilling, H. C. In Biosynthesis of Isoprenoid Compounds; Porter, J. W., Spurgeon, S. L., Eds.; Wiley: New York, 1981; Vol. 1, Chapter 8.
(14) For a recent investigation of non-head-to-tail isoprenoid biosynthesis by recombinant yeast squalene synthase, see: Zhang, D. L.; Poulter, C. D. J. Am. Chem. Soc. 1995, 117, 1641.
(15) A number of analogs have been prepared for structure-activity relationship studies: (a) Burk, R. M.; Berger, G. D.; Bugianesi, R. L.; Girotra, N. N.; Parsons, W. H.; Ponpipom, M. M. Tetrahedron Lett. 1993, 34, 975. (b) Lester, M. G.; Gilbin, G. M. P.; Inglis, G. G. A.; Procopiou, P. A.; Ross, B. C.; Watson, N. S. Tetrahedron Lett. 1993, 34, 4357. (c) Chiang, Y. P.; Biftu, T.; Doss, G. A.; Plevyak, S. P.; Marquis, R. W.; Bergstrom, J. D.; Kurtz, M. M.; Rew, D. J.; Berger, G. D. Bioorg. Med. Chem. Lett. 1993, 3, 2029. (d) Kuo, C. H.; Plevyak, S. P.; Biftu, T.; Parsons, W. H.; Berger, G. D. Tetrahedron Lett. 1993, 34, 6863. (e) Lester, M. G.; Evans, G. L.; Henson, R. A.; Procopiou, P. A.; Sareen, M.; Snowden, M. A.; Spooner, S. J.; Srikantha, A. A. P.; Watson, N. S. Bioorg. Med. Chem. Lett. 1994, 4, 2683. (f) Shaw, R. E.; Burgess, C.; Cousins, R. P. C.; Giblin, G. M. P.; Livermore, D. G. H.; Shingler, A. H.; Smith, C.; Youds, P. M. Bioorg. Med. Chem. Lett. 1994, 4, 2155. (g) Cox, B.; Hudson, J. L.; Keeling, S. E.; Kirk, B. E.; Srikantha, A. R. P.; Watson, N. S. Bioorg. Med. Chem. Lett. 1994, 4, 1931. (h) Kuo, C. H.; Robichaud, A. J.; Rew, D. J.; Bergstrom, J. D.; Berger, G. D. Bioorg. Med. Chem. Lett. 1994, 4, 1591. (i) Andreotti, D.; Procopiou, P. A.; Watson, N. S. Tetrahedron Lett. 1994, 35, 1789. (j) Sharratt, P. J.; Hutson, J. L.; Inglis, G. G. A.; Lester, M. G.; Procopiou, P. A.; Watson, N. S. Bioorg. Med. Chem. Lett. 1994, 4, 661, (k) Biftu, T.; Acton, J. J.; Berger, G. D.; Bergstrom, J. D.; Dufresne, C.; Kurtz, M. M.; Marquis, R. W.; Parsons, W. H.; Rew, D. R.; Wilson, K. E. J. Med. Chem. 1994, 37, 421. (1) Pompipom, M. M.; Girotra, N. N.; Bugianesi, R. L.; Roberts, C. D.; Berger, G. D.; Burk, R. M.; Marquis, R. W.; Parsons, W. H.; Bartizal, K. F.; Bergstrom, J. D.; Kurtz, M. M.; Onishi, J. C.; Rew, D. J. J. Med. Chem. 1994, 37, 4031. (m) Additional citations to this literature can be found in the references above.
(16) For alternative strategies in which differently functionalized acyclic precursors are cyclized to the dioxabicyclooctane core intermediates, see refs 10 and 11.
(17) Early structure determination studies by ${ }^{1} \mathrm{H}$ NMR spectroscopy on the zaragozic acids excluded the other possible [3.2.1]bicyclic ketal ring system i. Evans and co-workers have performed molecular mechanics calculations on both [3.2.1]dioxabicyclooctanes and concluded that the unnatural isomer i is more stable (ref 11). No data are available on the kinetics of formation of each of the two bicyclic ketals from acyclic precursors.

Figure 3. Structural comparison of presqualene pyrophosphate and zaragozic acid C.

Scheme 1

Installation of the $C(4)$ hydroxy acid would require either oxidative functionalization of olefin $\mathbf{6}$ or nucleophilic addition to ketone 7. On the basis of molecular models, we anticipated that dihydroxylation of dioxabicyclooctane 6 would occur preferentially from the convex face to provide the desired $\mathrm{C}(4)$ carbinol. Analysis of ketone 7 suggested a similar preference for addition to the convex face to give the undesired stereochemistry at $C(4)$ (Figure 4). Therefore, we initially expected to install the desired $\mathrm{C}(4)$ hydroxy acid functionality via the alkene intermediate 6, which would be prepared from ketone 7. Disconnection of ketone $\mathbf{7}$ led to the acyclic fragment $\mathbf{8}$, in which a hydroxy group at $\mathrm{C}(4)$ would serve as the latent carbonyl. Fragmentation of the $\mathrm{C}(1)-\mathrm{C}(7)$ bond in $\mathbf{8}$ afforded two subunits: 9, which includes most of the stereochemical information present in the dioxabicyclooctane skeleton, and 10, which encompasses the $\mathrm{C}\left(1^{\prime}\right)$ alkyl side chain with its attendant stereogenic centers (Scheme 1).

Results and Discussion

Synthesis of Alkyne 22. The synthesis of zaragozic acid C commenced with the preparation of alkyne 22 (Scheme 2) from

Figure 4. Functionalization of the dioxabicyclooctane.
D-erythronic γ-lactone $\mathbf{1 3}$, which is readily available from D-araboascorbic acid $\left(\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{K}_{2} \mathrm{CO}_{3}\right.$, then $\left.\mathrm{H}_{3} \mathrm{O}^{+}\right) .{ }^{18}$ Condensation of $\mathbf{1 3}$ with dimethylamine ($\mathrm{MeOH}, 0^{\circ} \mathrm{C}$) afforded the derived 2,3,4-trihydroxybutyramide, which was selectively ketalized $\left(\mathrm{Et}_{2} \mathrm{C}(\mathrm{OMe})_{2}\right.$, catalytic TsOH$)$ to give 14. Protection of the secondary alcohol as its corresponding benzyl ether $(\mathrm{BnBr}, \mathrm{NaH})$ furnished amide $\mathbf{1 5}$.
Installation of the $\mathrm{C}(5)$ quaternary center was effected, starting with amide 15, through two sequential carbanion additions. Treatment of 15 with (ethoxyvinyl)lithium (ethyl vinyl ether, ${ }^{\prime} \mathrm{BuLi}$) yielded an intermediate α-ethoxy- α, β-unsaturated ketone 16. Subsequent addition of $\mathrm{TMSC} \equiv \mathrm{CMgBr}$ to $\mathbf{1 6}$ afforded a 20:1 mixture of diastereomeric products $\mathbf{1 7 / 1 8}$, as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. ${ }^{19}$

[^3]Scheme $\mathbf{2}^{a}$

${ }^{a}$ (a) $\mathrm{Me}_{2} \mathrm{NH}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}, 97 \%$; (b) (MeO$)_{2} \mathrm{CEt}_{2}$, catalytic TsOH , 90%; (c) $\mathrm{NaH}, \mathrm{BnBr}, \mathrm{THF}, 96 \%$; (d) (ethoxyvinyl)lithium, THF, -78 ${ }^{\circ} \mathrm{C}$; (e) $\mathrm{TMSC} \equiv \mathrm{CMgBr}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}, 84 \%$; (f) $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOH}$, $-78{ }^{\circ} \mathrm{C}, 84 \%$; (g) $\mathrm{NaBH}_{4}, \mathrm{MeOH}$; (h) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 78 \%$ in two steps; (j) ' $\mathrm{BuMe}_{2} \mathrm{SiCl}, \mathrm{Et}_{3} \mathrm{~N}, 4$-DMAP then $\mathrm{Me}_{3} \mathrm{SiCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, 88%.

Figure 5. Stereoselective addition of $\mathrm{TMSC} \equiv \mathrm{CMgBr}$ to 16: putative chelate structures.

Nucleophilic addition to the intermediate ketone 16 was conducted under reaction conditions which favored a chelationcontrolled process. In principle, this ketone can form three different magnesium chelates, A, B, and \mathbf{C} (Figure 5). ${ }^{20}$ The observed stereochemical outcome of the reaction is consistent with the addition of $\mathrm{TMSC} \equiv \mathrm{CMgBr}$ occurring through the intermediacy of a 5 -membered chelate formed by the α-benzyloxy and the ketone carbonyl oxygens (A, Figure 5). ${ }^{21}$ Ketone

[^4]Scheme $\mathbf{3}^{\boldsymbol{a}}$

${ }^{a}$ (a) 9-BBNOTf, ${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}$ then $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{MeOH}, 84 \%$; (b) $\mathrm{LiOH}, \mathrm{H}_{2} \mathrm{O}_{2}$, aqueous THF; (c) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 92 \%$; (d) $\mathrm{TsCl}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, 0^{\circ} \mathrm{C}, 89 \%$; (e) $\mathrm{PhLi}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, 91 \%$; (f) ' $\mathrm{BuCOCl}, 4-\mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 90 \%$; (g) $\mathrm{H}_{2}, \mathrm{Pd}-\mathrm{C}, \mathrm{EtOAc}, 99 \%$; (h) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 96 \%$.
addition proceeding through 1,3-chelate \mathbf{B} was expected to favor formation of the product bearing the undesired stereochemistry at the newly installed quaternary center (18). Similarly, addition proceeding through chelate \mathbf{C} was anticipated to give the unwanted Felkin-Ahn product 18. ${ }^{22}$

Subsequent elaboration to diol 20 was accomplished through ozonolysis of the hydroxy vinyl ether 17 under carefully controlled conditions (Scheme 2). ${ }^{23}$ Treatment of 17 with a dilute stream of ozone (~ 1 equiv, $-78^{\circ} \mathrm{C}$) effected oxidation of the vinyl ether in reproducibly high yields (84%). Mild reduction of α-hydroxy ester 19 with NaBH_{4} in $\mathrm{MeOH}\left(23^{\circ} \mathrm{C}\right)$ furnished diol 20, along with a small amount ($5-10 \%$) of 21, the product of alkyne desilylation. In practice, the unpurified product from this reduction was reacted directly with anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH to effect complete conversion to the desired terminal acetylene 21. Differential protection of the primary and tertiary carbinols in 21 was accomplished using a one-pot procedure involving silylation with ${ }^{\prime} \mathrm{BuMe} \mathrm{S}_{2} \mathrm{SiCl}$ (TBSCl) and $\mathrm{Me}_{3} \mathrm{SiCl}$ (TMSCl), respectively. A solution of the diol, 4-DMAP, and $\mathrm{Et}_{3} \mathrm{~N}$ was initially treated with TBSCl, and upon consumption of 21 (as indicated by thin-layer chromatography), the reaction mixture was subsequently treated with TMSCl to furnish 22. The nine-step sequence of reactions described has been routinely conducted to prepare 22 on a $30-40 \mathrm{~g}$ scale.
Synthesis of the Alkyl Side Chain Aldehyde 32. Preparation of the alkyl side chain was achieved via a seven-step reaction sequence employing Evans's asymmetric aldol addition chemistry to install both the $C\left(4^{\prime}\right)$ and $C\left(5^{\prime}\right)$ stereogenic centers (Scheme 3). ${ }^{24}$ Treatment of 5 -(benzyloxy)pentanal (24) with the di- n-butylboryl enolate of N-propionyl-((S)-benzyloxazo-

[^5]
Scheme 4^{a}

${ }^{a}$ (a) "BuLi, THF, $-45^{\circ} \mathrm{C}$; (b) 32, LiBr, THF, 93\%; (c) Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 93 \%$; (d) $\left[\mathrm{Cr}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right]_{2}, \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}, 60 \%$; (e) ${ }^{n} \mathrm{Bu}_{4} \mathrm{NF}, \mathrm{THF}, 93 \%$.
lidinone gave the aldol adduct 25 in 97% diastereomeric excess (de), as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Hydrolysis of the auxiliary $\left(\mathrm{LiOH}, \mathrm{H}_{2} \mathrm{O}_{2}\right)^{25}$ and reduction of the resulting acid 26 with LiAlH_{4} furnished diol 27 as a white, crystalline solid (92% in two steps).

Replacement of the primary hydroxyl in 27 with the requisite phenyl substituent was effected following a two-step protocol that involved (1) selective tosylation of the primary carbinol (TsCl, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, 0^{\circ} \mathrm{C}$) to give 28 and (2) in situ closure to oxetane 29, followed by $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$-promoted ring opening with phenyllithium. ${ }^{26}$ Nucleophilic opening of the intermediate oxetane occurred with complete regioselectivity to provide 30 in 80% yield for the overall sequence. The resulting alcohol $\mathbf{3 0}$ was protected as the trimethylacetyl (Piv) ester 31. Utilization of this hindered protecting group ensured that the $C\left(4^{\prime}\right)$ carbinol would remain masked under the strongly acidic conditions subsequently developed for the cyclization reaction (vide infra). Hydrogenolytic removal of the benzyl ether ($\mathrm{H}_{2}, \mathrm{Pd}-\mathrm{C}$), followed by Swern oxidation of the resulting alcohol, provided the zaragozic acid C side chain precursor, aldehyde $32 .{ }^{27}$

Synthesis of the Dioxabicyclooctane Core. We next proceeded to investigate the coupling of acetylene 22 with aldehyde 32 (Scheme 4). Addition of a solution of aldehyde 32 to a solution of acetylide 33 in either THF or $\mathrm{Et}_{2} \mathrm{O}$ at -78 ${ }^{\circ} \mathrm{C}$ yielded a mixture of both the desired product 34 and recovered starting materials. We speculated that proton transfer between acetylide 33 and aldehyde 32 was responsible for the reduced yields of 34 . Attempts to attenuate the basicity of the lithium acetylide by transmetalation with either MgBr_{2} or CeCl_{3} had little effect in preventing the proton-transfer side reaction. ${ }^{28}$ In related model studies, addition of either the lithium, magnesium, or cerium acetylide to hexanoyl chloride (used as a model for the side chain acid chloride) was also unsuccessful. ${ }^{29}$ Efficient coupling of the two subunits, 32 and 33 , was accomplished according to a protocol described by Brandsma for the addition of lithium acetylides to readily enolizable

[^6]ketones. ${ }^{30}$ Addition of 0.5 equiv of anhydrous LiBr to a solution of lithium acetylide 33 prior to the addition of a solution of aldehyde $\mathbf{3 2}$ provided the desired adduct 34 as a mixture of epimeric alcohols in 93% yield. The mixture of propargylic alcohols 34 was then oxidized with Dess-Martin periodinane to furnish ynone $35 .{ }^{31}$

Reduction of $\mathbf{3 5}$ to the corresponding trans enone would provide the intermediate needed for installation of the remaining hydroxyl stereocenters at $C(6)$ and $C(7)$. Thus, we investigated methods for the stereoselective reduction of ynones to trans enones. Reagents known to effect this transformation include metal hydride species (e.g., Red-Al), dissolving metal reductions ($\mathrm{Li} / \mathrm{NH}_{3}$), and low-valent chromium salts $\left(\mathrm{CrSO}_{4}, \mathrm{CrCl}_{2}\right)$. ${ }^{32}$ Additionally, semireduction with H_{2} over $\mathrm{Pd}-\mathrm{C}$, followed by photochemical isomerization of the resulting cis enone, would afford the desired trans product. With the exception of the Cr (II) salts, all other methods screened gave poor isolated yields of ketone 36 and led to extensive decomposition of the starting material. Reactions involving either CrSO_{4} or CrCl_{2} were highly capricious, however, and gave variable yields of $\mathbf{3 6}$ (10-30\%). We suspected that the air sensitivity of the Cr (II) reagents, which necessitated rigorous exclusion of oxygen during their preparation and in the course of the reaction, was the source of the difficulties. ${ }^{33}$ A solution to this problem was discovered in our laboratories when the commercially available chromium(II) acetate monohydrate dimer, $\left[\mathrm{Cr}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right]_{2}$, was used in place of either CrSO_{4} or $\mathrm{CrCl}_{2}{ }^{34}$ The use of $\left[\mathrm{Cr}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right]_{2}$ gave highly reproducible results and provided $\mathbf{3 6}$ in yields more than twice as high (60%) as those obtained with any of the methods previously examined.

Dihydroxylation of enone 36 with OsO_{4} under catalytic conditions (NMO, acetone $/ \mathrm{H}_{2} \mathrm{O}$) proceeded very slowly ($\sim 10 \%$ after 48 h at $23^{\circ} \mathrm{C}$). ${ }^{35}$ The small amount of product isolated proved to be a $1: 1$ mixture of $\operatorname{syn} \mathrm{C}(6) / \mathrm{C}(7)$ alcohol diastereomers 37:38, as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy (Figure 6). Selective deprotection of the trimethylsilyl ether at $C(5)$ $\left(\mathrm{ClCH}_{2} \mathrm{CO}_{2} \mathrm{H}, \mathrm{MeOH}\right)$ and treatment of the resulting enone 39 with $10 \mathrm{~mol} \% \mathrm{OsO}_{4}$ (NMO, acetone $/ \mathrm{H}_{2} \mathrm{O}$) afforded the product

[^7]
 Substrate B $^{1} \quad$ B 2 Desired : Undesired

36	TBS	TMS	$\begin{gathered} 1: 1 \\ 37: 38 \end{gathered}$
39	TBS	H	$\begin{array}{r} 1: 9 \\ 40: 41 \end{array}$
42	H	TMS	$\begin{array}{r} 1: 9 \\ 43: 44 \end{array}$
45	H	H	$\begin{array}{r} 1.1: 1 \\ 46: 47 \end{array}$
45	H	H	$\begin{array}{r} 1.7: 1 \\ 46: 47 \end{array}$
\star conducted with added (DHQ) ${ }_{2}$ PHAL or (DHQD) ${ }_{2}$ PHAL			

Figure 6. Summary of results for enone dihydroxylation reactions.
as a $1: 9$ mixture of diastereomers 40 and 41. The major product 41 isolated in the dihydroxylation reaction, however, was shown to possess the incorrect $\mathrm{C}(6) / \mathrm{C}(7)$ diol stereochemistry. ${ }^{36}$ In an analogous experiment, treatment of enone $\mathbf{4 2}$ with catalytic OsO_{4} provided a $1: 9$ mixture of products, with the undesired diol diastereomer 44 predominating. Removal of both the TBS and TMS ethers in $\mathbf{3 6}$ gave diol $\mathbf{4 5}$. Dihydroxylation of $\mathbf{4 5}$ furnished a 1.1:1 mixture of $\mathbf{4 6}$ and $\mathbf{4 7}$. Fortunately, $\mathbf{4 5}$ could be osmylated in the presence of either Sharpless ligand (DHQ) $)_{2} \mathrm{PHAL}$ or (DHQD) $)_{2} \mathrm{PHAL}$ with NMO as the reoxidant to give a 1.7:1 mixture of desired/undesired products 46:47 in yields greater than $95 \% .37 .38$ It is interesting to note that the use of either of these ligands afforded the diol with the desired $C(6) / C(7)$ stereochemistry preferentially.
Additional enones were examined as a means for potentially improving the dihydroxylation diastereoselectivity (Figure 7). Selective benzoylation of the primary alcohol in $\mathbf{4 5}$ with either 4 -methoxybenzoyl chloride (4-DMAP, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) or 2-nitrobenzoic acid (DCC, DMAP) gave the corresponding esters 48 and 49, respectively. ${ }^{39}$ Subjection of either of these compounds to standard dihydroxylation conditions (OsO_{4},

[^8]

Figure 7. Alternative dihydroxylation dubstrates.
NMO, acetone $/ \mathrm{H}_{2} \mathrm{O} / \mathrm{BuOH}$) furnished mixtures of carbinol products (1.3-1.8:1 by ${ }^{1} \mathrm{H}$ NMR spectroscopy), favoring the desired $(6 R, 7 R)$ diol. Use of either $(\mathrm{DHQ})_{2} \mathrm{PHAL}$ or $(\mathrm{DHQD})_{2^{-}}$ PHAL in the dihydroxylation reaction of substrates 48 and 49 offered no improvement on the reaction diastereoselectivity. Additionally, the derived picolinic ester 50 (prepared in an analogous fashion to 49), when treated with OsO_{4}, afforded a similar ratio of products.

Treatment of 45 with 2 -methoxypropene (PPTS, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) cleanly provided the isopropylidene ketal 51. Reaction of $\mathbf{5 1}$ with OsO_{4} yielded a 1:2.2 mixture of desired/undesired diol products $(6 R, 7 R) /(6 S, 7 S)$. In contrast, dihydroxylation of the cyclic carbonate 52 , derived from treatment of 45 with triphosgene ($\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, 0-25^{\circ} \mathrm{C}$), gave a $2.2: 1$ mixture of diols, favoring the desired $(6 R, 7 R)$ diastereomer.

Formulation of a useful model that accounts for the observed selectivities in the dihydroxylation reactions of the derivatized enones $\mathbf{3 6}, \mathbf{4 5}$, and $\mathbf{4 8}-52$ is difficult. The data do suggest that placement of an electron-withdrawing group at $\mathrm{C}(10)$ promotes the formation of the desired $(6 R, 7 R)$ product. We speculate that changes to the electronic structure of the enone system may be altering the mechanism and, consequently, the stereochemical outcome of the dihydroxylation reaction.

Stereochemical Proof. The two diastereomers 46 and 47 isolated from the dihydroxylation reaction could not be separated by chromatography on silica gel. Cyclization of the mixture of unpurified 46 and 47 with $0.5 \% \mathrm{HCl}$ in MeOH afforded the corresponding 2,8-dioxabicyclooctanes 53 and 56 (86% combined yield for two steps), which were separated by chromatography on silica gel (Scheme 5). In practice, however, separation of the mixture was most easily effected following selective protection of both primary hydroxyls as TBS ethers (Scheme 5, 53 $\boldsymbol{\mathbf { 5 4 }}$ and $\mathbf{5 6} \rightarrow \mathbf{5 7}$). This two-step sequence (cyclization-protection) cleanly provided the desired bicyclic ketal 54. Treatment of either diastereomer with 2 equiv of benzoyl chloride (4-DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded the bis(benzoate) esters 55 and 58, respectively. 'H NMR difference NOE experiments on both $\mathbf{5 5}$ and $\mathbf{5 8}$ unambiguously established the proper stereochemical assignment for each diastereomer.

[^9]Scheme 5

$\left(\mathrm{PhCO}_{2} \mathrm{O}\right.$

desired ($6 R, 7 R$)

Scheme $\mathbf{6}^{\boldsymbol{a}}$

${ }^{a}$ (a) TBSCl, 4-DMAP, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 74 \%$; (b) ' $\mathrm{BuCOCl}, 4$-DMAP, $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}, 97 \%$; (e) $\mathrm{H}_{2}(1 \mathrm{~atm}), \mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}, \mathrm{Pd}-\mathrm{CaCO}_{3}, \mathrm{EtOH}$, 99%; (d) $\left(\mathrm{COCl}_{2}\right.$, DMSO, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 96 \%$; (e) $\mathrm{TMSCH}_{2} \mathrm{Li}, \mathrm{LiBr}$, THF/HMPA, $-78{ }^{\circ} \mathrm{C}$; (f) $18-\mathrm{C}-6$, KHMDS, THF, $-78^{\circ} \mathrm{C}$ with warming to $-20^{\circ} \mathrm{C}$; (g) TBSOTf, 2,6 -lutidine, $<35 \%$ in three steps.

Synthesis and Functionalization of the 2,8-Dioxabicyclo-octan-4-one 61. Selective protection of tetraol 53 (TBSCl, $\mathrm{Et}_{3} \mathrm{~N}, 4$-DMAP) furnished diol 54 (Scheme 6). Reaction of 54 with trimethylacetyl chloride (4-DMAP, $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$) gave triester 59, which was then subjected to hydrogenolysis ($\mathrm{H}_{2}, \mathrm{l}$ $\left.\mathrm{atm}, \mathrm{Pd}(\mathrm{OH})_{2}-\mathrm{C}, \mathrm{Pd}-\mathrm{CaCO}_{3}\right)$ to effect cleavage of the benzylic ether at C(4). ${ }^{40}$ Swern oxidation of the resulting secondary alcohol 60 provided ketone 61, a key advanced intermediate in the synthesis.

Our initial plan for conversion of ketone 61 to the requisite α-hydroxy carboxylic acid involved dihydroxylation of olefin 62 and oxidation of the resulting diol. Methylenation of ketone

[^10] protecting groups were cleaved under the reaction conditions.

64

Figure 8. Dihydroxylation of olefin 62.
61 was accomplished through a two-step Peterson olefination sequence to give $62 .{ }^{41}$ Prior to developing these reaction conditions, a number of other $\mathrm{C}=\mathrm{O}$ methylenation methods were screened, including (1) Wittig olefination with $\mathrm{Ph}_{3} \mathrm{PCH}_{2}{ }^{42}$ (2) reaction with both Tebbe $\left(\mathrm{Cp}_{2} \mathrm{TiCl}_{2}, \mathrm{Me}_{3} \mathrm{Al}\right)^{43}$ and Nozaki $\left(\mathrm{CH}_{2} \mathrm{Br}_{2}, \mathrm{Zn}, \mathrm{TiCl}_{4}\right)$ reagents, ${ }^{44}$ and (3) addition of MeMgBr , followed by dehydration of the resulting tertiary alcohol. ${ }^{45}$ Under a variety of conditions, these approaches (e.g., 1 and 2) either returned unreacted ketone 61 or gave the enone product arising from β-elimination of the $\mathrm{C}(8)$ OTBS group. The addition of MeMgBr was effected in good yield ($>80 \%$); however, successful dehydration conditions could not be found. Preparation of the desired exocyclic olefin was accomplished when (trimethylsilyl)methyllithium ($\mathrm{TMSCH}_{2} \mathrm{Li}$) was added to 61 in the presence of 0.5 equiv of $\mathrm{LiBr}\left(\mathrm{THF},-78^{\circ} \mathrm{C}\right.$), followed by subsequent elimination of the resulting vicinal hydroxysilane (KN(TMS) $)_{2}$, 18 -crown- 6 , THF/HMPA, $-78 \rightarrow-20^{\circ} \mathrm{C}$). ${ }^{46}$ Although alkene 62 was prepared using this protocol, the yields for both reactions were highly variable ($5-35 \%$) and were sensitive to the source and age of both the $\mathrm{TMSCH}_{2} \mathrm{Li}$ and the $\mathrm{KN}(\mathrm{TMS})_{2}$ base.
Upon treatment of 62 with catalytic OsO_{4} (NMO, acetone/ $\left.{ }^{\dagger} \mathrm{BuOH}\right)$, a single diol diastereomer 63, possessing the undesired stereochemistry at C(4), was isolated (Figure 8). ${ }^{1} \mathrm{H}$ NMR NOE difference experiments on 62 indicated that the 1,3-dioxane ring was in the chair conformation illustrated; moreover, analysis of molecular models suggested that distortions leading to a halfchair arrangement would result in further blocking of the concave face of the exo-methylene. Additionally, dihydroxylation of exocyclic olefins in related ring systems has been shown to favor attack of OsO_{4} from the convex face. ${ }^{47}$ In light of these observations, the stereochemical outcome of this transformation was surprising.

[^11]Table 1. Summary of Results from TMSC $\equiv \mathrm{CLi}$ Addition to Ketone 61

${ }^{a}$ Reactions were conducted at $-78{ }^{\circ} \mathrm{C}$ with slow warming to $0^{\circ} \mathrm{C}$ in a $1: 1$ mixture of cosolvents with the exception of entry $5\left(3: 1 \mathrm{Et}_{2} \mathrm{O}\right.$ / pyridine). ${ }^{b}$ The diastereoselectivity was determined by integration of the ${ }^{1} \mathrm{H}$ NMR $\mathrm{C}(6)$ methine resonances for 65 and 66 at $\delta 5.51$ and 5.72 ppm , respectively. ${ }^{c}$ Yields uniformly range from 75 to 90%.

We proceeded to investigate additions to ketone 61 with nucleophiles that could be subsequently converted to the desired C(4) carboxylate. ${ }^{48}$ This decision was based on an earlier finding that $\mathrm{TMSCH}_{2} \mathrm{Li}$ added to 61 to give an approximately equal mixture of epimeric β-hydroxysilanes (vide supra). In further studies, it was demonstrated that lithium (trimethylsilyl)acetylide (TMSC $\equiv \mathrm{CLi}$) could be added to ketone 61 in THF to give a 1.5 :1 mixture of carbinol adducts 65 and 66 (Table 1 , entry 1). This diastereomeric mixture could be readily separated by chromatography on silica gel, following alkyne desilylation $\left(\mathrm{AgNO}_{3}\right)$, to furnish the corresponding desired acetylenic alcohol 67 (Scheme 7). ${ }^{49}$

The effect of both cosolvents and additives on the diastereochemical outcome of the lithium acetylide reaction was investigated (Table 1). ${ }^{50}$ When 61 was added to a THF/TMEDA solution of TMSC $\equiv \mathrm{CLi}$, the diastereoselectivity reversed, and a $1: 2$ mixture of propargylic alcohol diastereomers 65 and 66 was isolated (entry 2). The use of $\mathrm{Et}_{2} \mathrm{O}$ as solvent had a

[^12]beneficial effect on the reaction diastereoselection (entry 7, 65: $66=3.5: 1$). The same reaction, when conducted with added LiBr (l equiv), led to a slight attenuation in the product diastereoselectivity (entry $6,65: 66=3.1: 1$); in the presence of excess LiBr (150 equiv), a reversal in the product distribution resulted as 66 was formed preferentially (entry 3, 65:66 $=1: 1.7$). These results suggested that the reaction diastereoselection might be influenced by changes to the aggregation state of the lithium acetylide. ${ }^{51}$ Solution studies on lithium acetylides indicate that their aggregation equilibria can be shifted in the presence of added tertiary amines (vide infra). On this basis, we investigated the effect of amine cosolvents on the diastereochemical outcome of this reaction. ${ }^{52}$ When an ethereal solution of ketone 61 was added to a suspension of $\mathrm{TMSC} \equiv \mathrm{CLi}$ in $1: 1 \mathrm{Et}_{2} \mathrm{O} / \mathrm{Me}_{3} \mathrm{~N}$ at -78 ${ }^{\circ} \mathrm{C}$, a significant improvement in the product ratio of $\mathbf{6 5 : 6 6}$ (6.1: 1) was observed, favoring the desired $C(4)$ tertiary alcohol (entry 10). In the presence of other tertiary amines ($\mathrm{Et}_{3} \mathrm{~N},{ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}$), similar positive effects on the reaction diastereoselection were noted ($65: 66 \geq 3.8: 1$, see entries 8 and 9).
The structures of lithium acetylides have been studied in the solid state and in solution. X-ray crystallographic analysis of $\mathrm{PhC} \equiv \mathrm{CLi}$ shows a dimeric structure in which two phenylethynyl units bridge two cationic lithium centers. ${ }^{53}$ Cryoscopic measurements and ${ }^{6} \mathrm{Li}$ and ${ }^{13} \mathrm{C}$ NMR studies reveal that in solution this dimer is in equilibrium with other tetrameric aggregates. ${ }^{54}$ Further work by Fraenkel has established qualitatively the effect of solvent and additives on the $\left[{ }^{[} \mathrm{BuC} \equiv \mathrm{CLi}^{2} \mathrm{~L}_{x}\right]_{2} \rightarrow$ $\left[\mathrm{BuC} \equiv \mathrm{CLi} \cdot \mathrm{L}_{n}\right]_{4}$ equilibrium (eq 1). ${ }^{55}$ These studies demonstrate

that diamine ligands such as TMEDA and donating solvents like THF promote dimer formation, whereas tetrameric aggregation states prevail when simple ethers $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ and tertiary amines are employed. Our findings, in conjunction with these previous investigations, suggest that the observed reaction diastereoselection in the addition of TMSC $\equiv \mathrm{CLi}$ to ketone 61 responds in a dramatic fashion to the aggregation state of the acetylide.

Stereochemical Assignment of the C(4) Center. The initial stereochemical assignment of the acetylenic adducts 65 and 66

[^13]Scheme 7^{a}

${ }^{a}$ (a) $\mathrm{AgNO}_{3}, 2,6$-lutidine, 90%; (b) Dibal- $\mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ /toluene, 84%; (c) $\mathrm{Ac}_{2} \mathrm{O}, 4-\mathrm{DMAP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 94 \%$; (d) $\mathrm{Cl}_{2} \mathrm{CHCO}_{2} \mathrm{H}, \mathrm{MeOH}, 90 \%$; (e) H_{2}, $\mathrm{Pd}-\mathrm{C}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, 99 \%$; (f) Dess-Martin, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 80-95 \%$; (g) $\mathrm{NaClO}_{2}, \mathrm{NaH}_{2} \mathrm{PO}_{4}, \beta$-isoamylene, $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ then N, N^{\prime}-diisopropyl- O-tert-butylisourea, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 70-85 \%$; (h) $\mathrm{HF} \cdot \mathrm{pyr}, \mathrm{THF} / \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, 90 \%$; (i) $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 97 \%$.

Figure 9. ${ }^{1} \mathrm{H}$ NMR difference NOE data for 73.
was based on a small coupling constant ($J<2 \mathrm{~Hz}$) between the $\mathrm{C}(3)-\mathrm{H}$ methine and the $\mathrm{C}(4)-\mathrm{OH}$ that was only observed in the ${ }^{1} \mathrm{H}$ NMR spectrum $(500 \mathrm{MHz})$ of the desired diastereomer 65. 'H NMR difference NOE data for the minor diastereomer 66 provided tentative support of this conclusion. ${ }^{56}$ Similar experiments performed on intermediate 73 (Scheme 7) allowed for definitive assignment of the stereochemistry at $\mathrm{C}(3), \mathrm{C}(4)$, $\mathrm{C}(6)$, and $\mathrm{C}(7)$. Irradiation of the $\mathrm{C}(6)-\mathrm{H}$ methine resulted in strong enhancement of both the $\mathrm{C}(3)-\mathrm{H}$ methine (11%) and the $\mathrm{C}(9)-\mathrm{H}$ vinylic proton (12%). Similarly, NOE enhancement of both $\mathrm{C}(6)-\mathrm{H}(9 \%)$ and $\mathrm{C}(9)-\mathrm{H}(3 \%)$ was observed upon irradiation of the $\mathrm{C}(3)-\mathrm{H}$ methine. Irradiation of the signals corresponding to the side chain $\mathrm{C}\left(1^{\prime}\right)-\mathrm{H}_{2}$ methylene protons resulted in an enhancement (3%) of the methine signal at $\mathrm{C}(7)-\mathrm{H}$ (Figure 9). These results secured the configuration of the stereocenter at $\mathrm{C}(4)$ and provided additional support for the stereochemical assignment of the dihydroxylation reaction ($\mathbf{4 5}$ $\rightarrow 46+47$). Moreover, the NOE data accumulated paralleled those reported for the natural product itself. ${ }^{5}$

Synthesis of the Tris-tert-butyl Ester 75. Completion of the synthesis of $(+)$-zaragozic acid C required installation of the $C\left(4^{\prime}\right)$ acetate, oxidation at $C(8), C(9)$, and $C(10)$, and coupling of the $\mathrm{C}(6) \mathrm{O}$-acyl side chain. Treatment of 67 with Dibal- $\mathrm{H}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ /toluene) effected removal of all three trimethylacetyl esters (Scheme 7). ${ }^{57}$ Subsequent exposure of the resulting tetraol 68 to excess $\mathrm{Ac}_{2} \mathrm{O}$ (4-DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) furnished 69 and installed the requisite acetate at $\mathrm{C}\left(4^{\prime}\right)$.

In our first synthesis of zaragozic acid C , the oxidations at $C(8), C(9)$, and $C(10)$ were performed in a stepwise manner to

[^14]give the dioxabicyclooctane tricarboxylate ester 75. To this end intermediate 69 was exposed to mildly acidic conditions $\left(\mathrm{Cl}_{2} \mathrm{CHCO}_{2} \mathrm{H}, \mathrm{MeOH}\right)$ to effect selective cleavage of the $\mathrm{C}(8)-$ OTBS ether. Semihydrogenation of the terminal acetylene (H_{2}, $\mathrm{Pd}-\mathrm{C}$, pyridine) provided olefin 70. Oxidation of the primary alcohol in 70 to the corresponding carboxylic acid was accomplished using the Dess-Martin periodinane, followed by treatment of the intermediate aldehyde with buffered NaClO_{2} solution $\left(\mathrm{NaH}_{2} \mathrm{PO}_{4}, \beta\right.$-isoamylene, THF/ $\left.\mathrm{H}_{2} \mathrm{O}\right) .{ }^{58}$ Esterification of the unpurified acid with N, N^{\prime}-diisopropyl-O-tert-butylisourea afforded the tert-butyl ester $71 .{ }^{59}$ Following a similar sequence of steps, the TBS ether at $\mathrm{C}(10)$ was cleaved (HFpyridine, THF/ pyridine) ${ }^{60}$ to give alcohol 72, which was oxidized and subsequently esterified to give the bis-tert-butyl ester 73.

Deprotection of the $\mathrm{C}(10)$-OTBS ether was best accomplished with HFopyridine buffered in a THF/pyridine solution and gave the desired product 72 in 90% yield. Attempts to cleave this silyl ether under acidic conditions with either aqueous HF in $\mathrm{CH}_{3} \mathrm{CN}$ or $\mathrm{Cl}_{3} \mathrm{CCO}_{2} \mathrm{H}$ in MeOH gave some of $72(60 \%)$, along with the product arising from acyl transfer of the $\mathrm{C}(6)-$ OAc to the $\mathrm{C}(10)-\mathrm{OH} 76$ (Figure 10). Desilylation conditions such as $\mathrm{Et}_{3} \mathrm{~N} \cdot 3 \mathrm{HF}\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ and ${ }^{n} \mathrm{Bu}_{4} \mathrm{NF} \cdot 2 \mathrm{H}_{2} \mathrm{O} / \mathrm{HF}$ (aqueous $\left.\mathrm{CH}_{3} \mathrm{CN}\right)^{61}$ were examined and yielded similar mixtures of 72 and 76. Deprotection under basic conditions with ${ }^{n} \mathrm{Bu}_{4} \mathrm{NF}$ (THF) or ${ }^{n} \mathrm{Bu}_{4} \mathrm{NF} \cdot 2 \mathrm{H}_{2} \mathrm{O}\left(\mathrm{CH}_{3} \mathrm{CN}\right)$ also resulted in the formation of 76 and, additionally, led to extensive product decomposition.
The remaining carboxylate at $\mathrm{C}(9)$ was installed following ozonolysis of $\mathbf{7 3}$ and oxidation of the resulting aldehyde $\mathbf{7 4}$ with buffered NaClO_{2} (Scheme 7). Esterification with N, N^{\prime}-diiso-propyl-O-tert-butylisourea furnished the desired tris-tert-butyl ester 75.

A more expeditious route to $\mathbf{7 5}$ from 69 was subsequently developed (Scheme 8). Semihydrogenation of $69\left(\mathrm{H}_{2}, \mathrm{Pd}-\mathrm{C}\right.$, pyridine) furnished olefin 77; exposure of 77 to HFpyridine (THF/pyridine) provided triol 78. Longer reaction times (~ 4

[^15]

Figure 10. Reagents which cause $\mathrm{C}(6)-\mathrm{OAc}$ to $\mathrm{C}(10)-\mathrm{OH}$ acyl transfer.

Scheme 8 ${ }^{a}$

$69 \quad b \quad$| \square | |
| ---: | :--- |
| | R |$\quad=T B S$

${ }^{a}$ (a) $\mathrm{H}_{2}, \mathrm{Pd}-\mathrm{C}, \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$; (b) $\mathrm{HF} \cdot \mathrm{pyr}, \mathrm{THF} / \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, 64 \%$ in two steps; (c) Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, 93 \%$; (d) $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ $\mathrm{MeOH},-78{ }^{\circ} \mathrm{C}$; (e) $\mathrm{NaClO}_{2}, \mathrm{NaH}_{2} \mathrm{PO}_{4}, \beta$-isoamylene, $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$; (f) N, N^{\prime}-diisopropyl-O-tert-butylisourea, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 72 \%$ in three steps; (g) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 90 \%$.
h) were necessary to effect cleavage of both the $C(8)$ and $C(10)$ silyl ethers. As a result, a small percentage ($\sim 10-15 \%$) of the product arising from acyl migration of the $\mathrm{C}(6)-\mathrm{OAc}$ formed (vide supra). Fortunately, separation of this material from the desired compound 78 was possible by chromatography on silica gel. Simultaneous oxidation of both primary carbinols at $\mathrm{C}(8)$ and $\mathrm{C}(10)$ gave dialdehyde 79. Treatment of a solution of 79 with a dilute stream of ozone $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH},-78{ }^{\circ} \mathrm{C}\right)$, followed by reductive workup with $\mathrm{Ph}_{3} \mathrm{P}$, provided $\mathbf{8 0} .^{62}$ The unpurified trialdehyde was then treated with a buffered NaClO_{2} solution and the resulting triacid esterified to give the tris-tertbutyl ester 75 (72% in three steps). Selective hydrolysis of the $\mathrm{C}(6)$ and $\mathrm{C}(7)$ acetates with $0.2 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$ in $\mathrm{MeOH}(0.5 \mathrm{~h})$ yielded 81. ${ }^{\text {ta }}$

Synthesis of the $\mathbf{C}(6) \boldsymbol{O}$-Acyl Side Chain. Preparation of the $\mathrm{C}(6) \mathrm{O}$-acyl side chain was achieved using a Claisen rearrangement-based strategy for the construction of the derived γ, δ-unsaturated carboxylic acid 89 (Scheme 9). Treatment of a suspension of paraformaldehyde in THF with alkynyllithium
(62) The ${ }^{1} \mathrm{H}$ NMR spectrum of 80 shows a mixture of at least three products, presumed to be hydrated forms of the trialdehyde.

Scheme 9^{a}

${ }^{a}$ (a) ${ }^{3} \mathrm{BuLi},\left(\mathrm{CH}_{2} \mathrm{O}\right)_{n}, \mathrm{THF}, 92 \%$; (b) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}, 79 \%$; (c) ${ }^{\prime} \mathrm{BuOOH}, \mathrm{Ti}\left(\mathrm{O}^{\prime} \mathrm{Pr}\right)_{4}, \mathrm{~L}-(+)$-DIPT, $4 \AA$ molecular sieves, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 98 \%$; (d) $\mathrm{Me}_{3} \mathrm{Al}$ then NaIO_{4}, aqueous THF; (e) vinyl $\mathrm{MgBr}, \mathrm{THF}, 62 \%$ three steps; (f) (EtO) $)_{3} \mathrm{CCH}_{3}, \mathrm{H}^{+}, 89 \%$; (g) $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O} / \mathrm{THF}, 100 \%$; (h) $(\mathrm{COCl})_{2}$, catalytic DMF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

83 afforded a propargylic alcohol which was reduced with LiAlH_{4} to give trans allylic alcohol 84. ${ }^{63}$ Sharpless asymmetric epoxidation of $\mathbf{8 4}$ provided the epoxy alcohol 85 in $>95 \%$ ee, as determined by analysis of the ${ }^{\prime} \mathrm{H}$ NMR spectrum of the corresponding Mosher (S)-MTPA ester. ${ }^{64.65}$ Regioselective epoxide opening with $\mathrm{Me}_{3} \mathrm{Al}$ using conditions described by Roush and Nozaki for related epoxy alcohols, followed by NaIO_{4} cleavage of the resulting 1,2-diol, yielded $86 .{ }^{66}$ Aldehyde 86 was treated with vinylmagnesium bromide to give a $60: 40$ mixture of alcohol diastereomers 87. Upon heating a solution of 87 in triethyl orthoacetate (catalytic diglycolic acid), the trans ester 88 was formed exclusively, as determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy. Saponification of the ethyl ester provided the corresponding carboxylic acid 89, suitable for coupling to the zaragozic acid core 81.
Model Studies with Zaragozic Acid A. Previously, it was shown that treatment of 81 (4-DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) with acid chloride $\mathbf{9 0}$ prepared from $\mathbf{8 9}$ afforded a 1:3 mixture of desired $C(6)$ to undesired $C(7)$ regioisomers. ${ }^{4}$ Thus, we initiated an investigation of reaction conditions that would favor formation of desired $\mathrm{C}(6) \mathrm{O}$-acylated compound. As a model substrate we chose to examine the acylation chemistry of zaragozic acid A (91), which was available in multigram quantities. ${ }^{67}$ In addition, hexanoyl chloride was employed as a surrogate acyl side chain (Scheme 10). Condensation of 92 with hexanoyl chloride (4-DMAP, $\mathrm{CH}_{3} \mathrm{CN}$) led to the formation of products 93 and 94 in a ratio similar to that observed in our original studies ($\sim 1: 3$). Acylation procedures which utilized either bis(tributyltin) oxide or dibutyltin oxide and hexanoyl chloride did not provide either 93 or 94 . Hexanoyl chloride was found to

[^16]Scheme 10

couple to 92 in the presence of excess 2 -tert-butyl-2-(diethyl-amino)-1,3-dimethylperhydro-1,3,2-diazaphosphorine. ${ }^{68}$ In the event, it was discovered that the undesired product 94 had formed predominantly ($93: 94, \sim 1: 10$ by ${ }^{1} \mathrm{H}$ NMR spectroscopy).

The development of a strategy which involved in situ protection of the $\mathrm{C}(7)-\mathrm{OH}$ and subsequent acylation of the $\mathrm{C}(6)$ carbinol was then investigated and ultimately realized. Upon treatment of 92 with di-tert-butyl dicarbonate $\left(\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0\right.$ ${ }^{\circ} \mathrm{C}$) and catalytic 4-DMAP, a $\sim 1: 3$ mixture of $\mathrm{C}(6) / \mathrm{C}(7)$ carbonates 95 and 96 was isolated (52% combined), along with recovered starting material 92 ($\sim 25 \%$) and a small amount ($\leq 15 \%$) of the bis-protected material. ${ }^{69}$ Alternatively, when 4-pyrrolidinopyridine was used instead of 4-DMAP, the reaction yielded $\mathrm{C}(7) O$-Boc intermediate 96 as the exclusive product ($80-85 \%$). ${ }^{70}$ This highly regioselective transformation made it possible to perform the subsequent coupling of hexanoyl chloride (4-DMAP, $\mathrm{Et}_{3} \mathrm{~N}$) to the $\mathrm{C}(6)-\mathrm{OH}$ in a single operation. ${ }^{71}$
$(+)$-Zaragozic Acid C. Completion of the zaragozic acid C synthesis was accomplished by following a strategy similar to that developed with the zaragozic acid A model (Scheme 11). Treatment of 81 with di-tert-butyl dicarbonate and catalytic 4-pyrrolidinopyridine ($\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$) gave 97 in 82% yield. Subsequent addition of a solution of carboxylic acid 89 and 1,3-dicyclohexylcarbodiimide (4-DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) furnished 98 (78%). Complete deprotection of 98 was effected with a 25% solution of trifluoroacetic acid in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (16 h) to afford the target compound, (+)-zaragozic acid C. ${ }^{16}$ Zaragozic acid C , prepared via the synthetic route described, was identical in all respects (${ }^{\prime} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, IR, HRMS, TLC, HPLC co-injection, optical rotation) to an authentic sample of the natural product. ${ }^{72}$

Conclusion

We have described an enantioselective synthesis of the potent squalene synthase inhibitor, $(+)$-zaragozic acid C. This route is highlighted by (1) a highly diastereoselective addition of

[^17]Scheme 11

${ }^{a}$ (a) $(\mathrm{Boc})_{2} \mathrm{O}, 4$-pyrrolidinopyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 82 \%$; (b) $89, \mathrm{DCC}$, 4-DMAP $\mathrm{CH}_{2} \mathrm{Cl}_{2} 78 \%$; (c) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 100 \%$.
$\mathrm{TMSC} \equiv \mathrm{CMgBr}$ to an α, β-unsaturated ketone to establish the quaternary center at $\mathrm{C}(5)$; (2) the use of $\left[\mathrm{Cr}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right]_{2}$ for the stereoselective reduction of an α, β-ynone to a trans enone; (3) an investigation of the effect of amine cosolvents on the nucleophilic addition of TMSC \equiv CLi to a key dioxabicyclooctanone intermediate; and (4) a solution to the problem of coupling the acyl side chain to the $\mathrm{C}(6)-\mathrm{OH}$ by regioselective protection of the $\mathrm{C}(7)$ carbinol. Additionally, we have outlined a protocol for installing the three carboxylic acids at $\mathrm{C}(8), \mathrm{C}(9)$, and $\mathrm{C}(10)$ by simultaneous oxidation of the corresponding trisaldehyde, which represents a more efficient strategy than that which we have previously reported. ${ }^{4}$ This work has resulted in the development of a synthesis which allows for rapid assembly of the dioxabicyclooctane skeleton common to all of the zaragozic acids and squalestatins. Moreover, a number of synthetic transformations on the bicyclic core have been delineated which may be useful for the preparation of synthetic and semisynthetic analogs.

Experimental Section

General Procedures. All reagents were commercially obtained except where noted. Where appropriate, reagents were purified prior to use. All nonaqueous reactions were performed using flame-dried glassware under an atmosphere of dry nitrogen. Air- and moisturesensitive liquids and solutions were transferred via syringe or stainless steel cannula. Organic solutions were concentrated by rotary evaporation below $45^{\circ} \mathrm{C}$ at $\sim 25 \mathrm{mmHg}$ (water aspirator). Diethyl ether and tetrahydrofuran were distilled from sodium benzophenone ketyl prior to use. N, N-Diisopropylethylamine, dichloromethane, pyridine, triethylamine, and boron trifluoride etherate were distilled from calcium hydride prior to use. Dimethyl sulfoxide and dimethylformamide were distilled under reduced pressure from calcium hydride and stored over $4 \AA$ molecular sieves. Methanol was distilled from magnesium methoxide prior to use. Chromatographic purification of products was accomplished using forced-flow chromatography on Baker 7024-R silica gel according to the method of Still. ${ }^{73}$ Thin-layer chromatography (TLC) was performed on EM Reagents 0.25 mm silica gel 60 F plates ($230-400$ mesh). Visualization of the developed chromatogram was performed by either fluorescence quenching, aqueous ceric ammonium molybdate (CAM) stain, or an ethanolic p-anisaldehyde spray.

NMR spectra were recorded on a Bruker AM-500 operating at 500 and 125 MHz for ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$, respectively, and are referenced internally to residual protio solvent signals. Data for ${ }^{1} \mathrm{H}$ are reported as follows: chemical shift (δ, ppm), multiplicity (s , singlet; d, doublet; t , triplet; q , quartet; qn, quintet; m, multiplet), integration, coupling constant (Hz), and assignment (when indicated, numbered protons refer to zaragozic acid C numbering ${ }^{1 \mathrm{c}}$). Data for ${ }^{13} \mathrm{C}$ are reported in terms of chemical shift. ${ }^{1} \mathrm{H}$ NMR NOE difference spectra were recorded on degassed samples and were quantitated by integrating the difference spectra. IR spectra were recorded on a Perkin-Elmer 1600 series spectrometer using NaCl salt plates and are reported in terms of frequency of absorption (ν, cm^{-1}). Melting points were determined on a Mel-Temp apparatus and are uncorrected. Combustion analysis was performed by Galbraith Laboratories, Inc. (Knoxville, TN). High-resolution mass spectra were obtained from the UC Irvine Mass Spectral facility. Optical rotations were determined on a JASCO DIP-181 polarimeter operating at either the sodium D line or Hg_{365} and are reported as follows: $[\alpha]^{23}$, concentration ($\mathrm{g} / 100 \mathrm{~mL}$), and solvent.
N, N-Dimethyl-2,3,4-trihydroxybutyramide. Gaseous $\mathrm{Me}_{2} \mathrm{NH}(\sim 40$ $\mathrm{mL}, 83 \mathrm{mmol}, 1.2$ equiv) was condensed directly into a reaction flask containing a suspension of $81.3 \mathrm{~g}(68.8 \mathrm{mmol})$ of d-erythronic γ-lactone ${ }^{18} 13 \mathrm{in} 240 \mathrm{~mL}$ of reagent-grade methanol at $0{ }^{\circ} \mathrm{C}$. The resulting homogeneous solution was stirred at $0^{\circ} \mathrm{C}$ for 15 min and then warmed to $23^{\circ} \mathrm{C}$. Consumption of the starting lactone ($R_{f}=0.80$) was monitored by TLC with $1 \% \mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{3} \mathrm{CN}$ as eluent. After being stirred at $23^{\circ} \mathrm{C}$ for 30 min , the solvent was evaporated under reduced pressure to afford a white solid. Recrystallization of the unpurified product from hot/cold methanol yielded $112.3 \mathrm{~g}(97 \%)$ of a white crystalline solid: $\mathrm{mp} 108-110^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{Hg}}-117.4^{\circ}\left(c=0.15, \mathrm{CH}_{3} \mathrm{OH}\right)$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) \delta 4.49\left(\mathrm{~d}, 1 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{H}_{4}\right), 3.74-$ $3.65\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{3}\right.$ and H_{8}), 3.13 (s, $3 \mathrm{H},-\mathrm{NCH}_{3}$), 2.97 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{NCH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}$) $\delta 174.9,74.8,69.5,64.2,37.7,36.2$; IR (thin film) $v 3356$ (br), 2936, 1629, 1508, 1401, 1257, 1064. Anal. Calcd for $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{NO}_{4}: \mathrm{C}, 44.16 ; \mathrm{H}, 8.03$. Found: $\mathrm{C}, 44.12 ; \mathrm{H}, 8.09$.
α-Hydroxy Amide 14. To a solution of 3,3-dimethoxypentane (107 $\mathrm{g}, 809 \mathrm{mmol}, 1.2$ equiv) and anhydrous p-toluenesulfonic acid (5.5 g , $29 \mathrm{mmol}, 0.04$ equiv) in 1 L of THF was added N, N-dimethyl-2,3,4trihydroxybutyramide ($110 \mathrm{~g}, 674 \mathrm{mmol}$) portionwise. The pale yellow solution was heated at reflux for 4 h before being cooled to $23^{\circ} \mathrm{C}$. The reaction was made basic with 20.0 mL of $\mathrm{Et}_{3} \mathrm{~N}$ and concentrated in vacuo to afford a pale yellow oil. The unpurified material was filtered through silica gel (gradient elution, $3: 1 \rightarrow 1: 2$ hexanes/EtOAc) to give $140 \mathrm{~g}(90 \%)$ of 14 as a clear, colorless oil: TLC $R_{f}=0.56$ ($1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$); $[\alpha]_{\mathrm{Hg}}-27.8^{\circ}\left(c=0.18, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 4.38\left(\mathrm{~d}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{H}_{4}\right), 4.10(\mathrm{dd}, 1 \mathrm{H}, J=$ $8.2,6.2 \mathrm{~Hz}, \mathrm{H}_{8}$), 3.99-3.95 (m, 1H, H3), $3.90(\mathrm{dd}, 1 \mathrm{H}, J=8.2,7.4$ $\mathrm{Hz}, \mathrm{H}_{8}$), 3.53 (br s, 1 H , secondary -OH), 3.07 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{NCH}_{3}$), $2.99(\mathrm{~s}$, $\left.3 \mathrm{H},-\mathrm{NCH}_{3}\right), 1.69-1.59\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.54(\mathrm{q}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}$, $\left.-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.88\left(\mathrm{t}, 3 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.81(\mathrm{t}, 3 \mathrm{H}, J=7.4$

[^18]$\mathrm{Hz},-\mathrm{CH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 172.2, 113.8, 77.6, 69.0 , $67.8,36.9,36.0,29.4,28.5,8.1,8.0$; IR (thin film) $v 3417$ (br), 2972, 2940, 2883, 1789, 1644, 1504, 1463, 1392, 1172, 1078, 919. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NO}_{4}$: C, $57.12 ; \mathrm{H}, 9.15$. Found: C, $56.81 ; \mathrm{H}, 9.17$.
α-Benzyloxy Amide 15. A 60% dispersion of NaH in mineral oil $(4.4 \mathrm{~g}, 110 \mathrm{mmol})$ was washed under a stream of N_{2} three times with dry pentane and dried briefly under vacuum. THF was added (125 mL), and the suspension was cooled to $0^{\circ} \mathrm{C}$. A solution of amide 14 ($25.0 \mathrm{~g}, 108 \mathrm{mmol}$) in 200 mL of THF was added dropwise over a 30 \min period. The mixture was stirred until H_{2} gas evolution subsided, at which time benzyl bromide ($16 \mathrm{~mL}, 135 \mathrm{mmol}$) was added via syringe. The reaction was held at $0^{\circ} \mathrm{C}$ for 15 min before being warmed to $23^{\circ} \mathrm{C}$. After 3 h at $23^{\circ} \mathrm{C}$, the reaction was quenched with 200 mL of $1.0 \mathrm{M} \mathrm{K}_{2} \mathrm{HPO}_{4}$, and the product was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 200$ mL). The combined organic extracts were washed with saturated aqueous $\mathrm{NaCl}(1 \times 250 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced pressure. Purification by silica gel chromatography (gradient elution, $5: 1 \rightarrow 1: 1$ hexanes/EtOAc) gave $33.4 \mathrm{~g}(96 \%)$ of 15 as a colorless oil which solidified in vacuo: TLC $R_{f}=0.38$ ($1: 1$ hexanes/ EtOAc); $\mathrm{mp} 55-56{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{Na}}+136.8^{\circ}\left(c=0.23, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.35-7.27\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 4.62(\mathrm{~d}, 1 \mathrm{H}, J=11.8$ $\left.\mathrm{Hz},-\mathrm{CH}_{2} \mathrm{Ph}\right), 4.46\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=11.8 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{Ph}\right), 4.35(\mathrm{dd}, 1 \mathrm{H}, J=$ $\left.13.1,6.5 \mathrm{~Hz}, \mathrm{H}_{3}\right), 4.28\left(\mathrm{~d}, 1 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{H}_{4}\right), 4.15(\mathrm{dd}, 1 \mathrm{H}, J=8.4$, $6.3 \mathrm{~Hz}, \mathrm{H}_{8}$), 3.93 (dd, $1 \mathrm{H}, J=8.4,7.0 \mathrm{~Hz}, \mathrm{H}_{8}$), 2.99 (s, $3 \mathrm{H},-\mathrm{NCH}_{3}$), $2.97\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{NCH}_{3}\right), 1.66-1.56\left(\mathrm{~m}, 4 \mathrm{H}\right.$, both $\left.-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.85(\mathrm{~m}, 6 \mathrm{H}$, both $-\mathrm{CH}_{2} \mathrm{CH}_{3}$) : ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$) $\delta 169.5,137.2,128.4$, 127.97, 127.94, 113.4, 76.8, 76.3, 71.8, 67.4, 36.9, 36.05, 36.03, 29.5, 28.4, 8.1; IR (thin film) $v 3030,2971,2939,2881,1650,1497,1455$, 1172, 1129, 1083, 1058, 919, 699; HRMS (EI) calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{4}$ 321.2120, found 321.1971. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{NO}_{4}: \mathrm{C}, 67.26$; H, 8.47; N, 4.36. Found: C, 67.09; H, 8.47; N, 4.12.

Propargylic Alcohol 17. A 1.7 M solution of 'BuLi in pentane (182 $\mathrm{mL}, 310 \mathrm{mmol}, 3.0$ equiv) was added to a solution of ethyl vinyl ether ($59 \mathrm{~mL}, 620 \mathrm{mmol}, 6.0$ equiv) in 125 mL of THF at $-78^{\circ} \mathrm{C}$. After 1 h , the yellow suspension was warmed to $0^{\circ} \mathrm{C}$ and stirred for an additional 2 h . The resulting colorless solution was recooled to -78 ${ }^{\circ} \mathrm{C}$ before a cold solution $\left(0^{\circ} \mathrm{C}\right)$ of amide $15(33.2 \mathrm{~g}, 103 \mathrm{mmol})$ in 150 mL of THF was added dropwise. The mixture was stirred at -78 ${ }^{\circ} \mathrm{C}$ for 10 min and then transferred via cannula into 500 mL of a vigorously stirred solution of $1: 1 \mathrm{Et}_{2} \mathrm{O} / 0.2 \mathrm{M}$ aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ at $0^{\circ} \mathrm{C}$. The organic phase was separated and the aqueous layer extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 300 \mathrm{~mL})$. The combined organic extracts were washed with saturated aqueous $\mathrm{NaCl}(1 \times 400 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to afford 36.0 g of an unpurified yellow oil, 16: TLC R_{f} $=0.57$ (4:1 hexanes/EtOAc).

The unpurified product 16 ($36.0 \mathrm{~g}, 103 \mathrm{mmol}$) was dissolved in 200 mL of THF, cooled to $-78^{\circ} \mathrm{C}$, and added via cannula to a cold suspension ($-78^{\circ} \mathrm{C}$) of the Grignard reagent derived from trimethylsilyl acetylene and ethylmagnesium bromide (359 mL of a 0.86 M solution in $\mathrm{THF} / \mathrm{Et}_{2} \mathrm{O}, 3.0$ equiv). Following addition, the reaction was warmed to $0^{\circ} \mathrm{C}$ and stirred for 15 min before being quenched with 300 mL of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The organic phase was collected, and the aqueous layer was extracted with $2 \times 300 \mathrm{~mL}$ of $\mathrm{Et}_{2} \mathrm{O}$. The organic extracts were combined, washed with saturated aqueous $\mathrm{NaCl}(1 \times$ 500 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to a yellow oil. Purification by chromatography on silica gel (gradient elution, 10:1 \rightarrow 9:1 hexanes/EtOAc) afforded propargyl alcohol 17 as a single diastereomer ($38.7 \mathrm{~g}, 84 \%$, colorless oil): TLC $R_{f}=0.59$ ($4: 1$ hexanes/ EtOAc); mp $37-40^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{Na}}+71.9^{\circ}\left(c=0.41, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}\right) \delta 7.44\left(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}\right), 7.18(\mathrm{t}, 2 \mathrm{H}, J=$ $7.6 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}$), $7.10\left(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}\right), 4.98(\mathrm{~d}, 1 \mathrm{H}, J=2.3$ $\left.\mathrm{Hz},-\mathrm{C}=\mathrm{CH}_{2}\right), 4.93\left(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.88(\mathrm{~d}, 1 \mathrm{H}, J=$ $10.8 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{Ph}$), 4.57 (ddd, $\left.1 \mathrm{H}, \mathrm{J}=9.0,5.7,2.9 \mathrm{~Hz}, \mathrm{H}_{3}\right), 4.47$ (d, $\left.1 \mathrm{H}, J=3.3 \mathrm{~Hz}, \mathrm{H}_{4}\right), 4.18\left(\mathrm{dd}, 1 \mathrm{H}, J=8.1,6.2 \mathrm{~Hz}, \mathrm{H}_{8}\right), 4.09(\mathrm{t}, 1 \mathrm{H}$, $\left.J=8.3 \mathrm{~Hz}, \mathrm{H}_{8}\right), 3.98\left(\mathrm{~d}, 1 \mathrm{H}, J=2.3 \mathrm{~Hz},-\mathrm{C}=\mathrm{CH}_{2}\right), 3.39-3.34(\mathrm{~m}$, $\left.2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 3.20(\mathrm{~s}, 1 \mathrm{H}$, tertiary -OH$), 1.74-1.62(\mathrm{~m}, 4 \mathrm{H}$, both $\left.-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.00\left(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.94(\mathrm{t}, 6 \mathrm{H}, J=7.5$ Hz , both $\left.-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.10\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\mathrm{TMS}}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 125 \mathrm{MHz}\right)$ $\delta 160.3,139.1,128.8,128.5,128.2,112.7,106.0,90.8,84.6,82.1,77.0$, $76.1,74.5,66.7,64.4,30.3,29.4,14.8,8.7,8.5,0.01$; IR (thin film) v 3421 (br), 2973, 2940, 2170, 1654, 1628, 1498, 1458, 1376, 1251, 1130,

1072, 1058, 843, 759, 698. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{SiO}_{5}: \mathrm{C}, 67.23$; H, 8.57. Found: C, 67.32; H, 8.15 .

Alkynyl Ester 19. A solution of vinyl ether $17(43.2 \mathrm{~g}, 96.7 \mathrm{mmol})$ in 450 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 50 mL of absolute EtOH was cooled to -78 ${ }^{\circ} \mathrm{C}$ before being treated with a dilute stream of ozone in oxygen (0.8 $\mathrm{mmol} / \mathrm{min}$). Careful monitoring by TLC showed the reaction to be complete after $2.5 \mathrm{~h}\left(\sim 1\right.$ equiv of O_{3}). Triphenylphosphine (26.2 g , 100 mmol) was then added to the reaction, and the mixture was slowly. warmed to $23^{\circ} \mathrm{C}$. Concentration of the reaction mixture yielded an orange oil. Purification by chromatography on silica gel (gradient elution, $12: 1 \rightarrow 6: 1$ hexanes/EtOAc) gave $36.4 \mathrm{~g}(84 \%)$ of a clear, viscous oil, 19: TLC $R_{f}=0.42$ (4:1 hexanes/EtOAc); $[\alpha]_{\mathrm{Hg}}+92.3^{\circ}(c$ $\left.=0.17, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.38-7.27(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{H}_{\text {arom }}$), $5.03\left(\mathrm{~d}, 1 \mathrm{H}, J=11.1 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{Ph}\right), 4.77(\mathrm{~d}, 1 \mathrm{H}, J=11.1 \mathrm{~Hz}$, $-\mathrm{CH}_{2} \mathrm{Ph}$), $4.41-4.36\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.27\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 4.17(\mathrm{~m}$, $\left.1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.09\left(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{H}_{4}\right), 4.03(\mathrm{dd}, 1 \mathrm{H}, J=8.2$, $\left.6.3 \mathrm{~Hz}, \mathrm{H}_{8}\right), 3.73\left(\mathrm{t}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{H}_{8}\right), 3.69(\mathrm{~s}, 1 \mathrm{H}$, tertiary -OH$)$, $1.61-1.54\left(\mathrm{~m}, 4 \mathrm{H}\right.$, both $\left.-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.32(\mathrm{t}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}$, $\left.-\mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 0.85\left(\mathrm{~m}, 6 \mathrm{H}\right.$, both $\left.-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.16\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\mathrm{TMS}}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 169.7,137.8,128.3,127.84,127.78,112.88,102.1$, $91.3,83.7,76.0,74.7,73.1,67.0,62.9,29.4,28.7,13.8,8.1,-0.49$, -0.52 ; IR (thin film) $v 3482$ (br), 2970, 2941, 2883, 1743, 1498, 1464, $1295,1251,1127,1094,1077,1060,1028,845,698 \mathrm{~cm}^{-1}$; HRMS (EI) calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{SiO}_{6} 448.2550$, found 448.2271 .

Core Fragment 21. A solution of the alkynyl ester 19 (36.2 g , 80.7 mmol) in 200 mL of $\mathrm{CH}_{3} \mathrm{OH}$ was cooled to $0^{\circ} \mathrm{C}$, and NaBH_{4} ($9.1 \mathrm{~g}, 240 \mathrm{mmol}, 3.0$ equiv) was cautiously added portionwise. Once gas evolution had subsided, the mixture was warmed to $23^{\circ} \mathrm{C}$. After 2 h , the reaction was recooled to $0^{\circ} \mathrm{C}$, diluted with 100 mL of $\mathrm{Et}_{2} \mathrm{O}$, and acidified to pH 2 with aqueous $1.0 \mathrm{M} \mathrm{NaHSO}_{4}$. The ethereal layer was collected, and the aqueous layer was extracted with $3 \times 300 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then concentrated to a colorless, viscous oil $(32.8 \mathrm{~g})$. The product 20 was used without further purification: TLC $R_{f}=0.52$ (2:1 hexanes/ EtOAc).

To a solution of $\mathbf{2 0}(32.8 \mathrm{~g}, 80.7 \mathrm{mmol})$ in 200 mL of $\mathrm{CH}_{3} \mathrm{OH}$ was added solid $\mathrm{K}_{2} \mathrm{CO}_{3}(11.2 \mathrm{~g}, 80.7 \mathrm{mmol})$. The reaction was stirred for 8 h at $23^{\circ} \mathrm{C}$ before 300 mL of $\mathrm{Et}_{2} \mathrm{O}$ was added. The resulting precipitate was removed via filtration through Celite. Evaporation of the filtrate under reduced pressure afforded a pale brown oil, which was purified by chromatography on silica gel (gradient elution, 9:1 \rightarrow $1: 1$ hexanes/EtOAc) to furnish 21.0 g (78%) of diol 21 as a clear, colorless oil: TLC $R_{f}=0.27$ (2:1 hexanes/EtOAc); $[\alpha]_{\mathrm{Na}}+68.5^{\circ}(c=$ $0.43, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.38-7.32\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$, $4.85\left(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{Ph}\right), 4.65\left(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{Ph}\right)$, 4.52-4.47 (m, 1H, H3), $4.43(\mathrm{~s}, 1 \mathrm{H}$, tertiary -OH$), 4.10(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $\left.8.4,6.2 \mathrm{~Hz}, \mathrm{H}_{8}\right), 3.84-3.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{10}\right), 3.65(\mathrm{~d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}$, $\left.\mathrm{H}_{4}\right), 3.59\left(\mathrm{t}, 1 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{H}_{8}\right), 2.54(\mathrm{~s}, 1 \mathrm{H},-\mathrm{C} \equiv \mathrm{CH}), 2.35(\mathrm{dd}, 1 \mathrm{H}$, $J=9.9,4.4 \mathrm{~Hz}$, primary -OH$), 1.67-1.60\left(\mathrm{~m}, 4 \mathrm{H}\right.$, both $\left.-\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $0.89\left(\mathrm{t}, 6 \mathrm{H}, J=7.4 \mathrm{~Hz}\right.$, both $\left.-\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ $\delta 137.5,128.5(2), 128.2,114.1,82.8,78.5,76.3,74.76,74.72,73.9$, $68.4,66.1,29.8,28.9,8.1,8.0$; IR (thin film) $\nu 3446$ (br), 3283,2972 , $2939,1456,1355,1200,1077,917$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{5}: \mathrm{C}$, 68.24; H, 7.84. Found: C, 67.89; H, 7.91.

Core Fragment 22. To a solution of diol $21(18.9 \mathrm{~g}, 56.5 \mathrm{mmol})$ in 250 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added $\mathrm{Et}_{3} \mathrm{~N}(23.6 \mathrm{~mL}, 169.0 \mathrm{mmol}, 3.0$ equiv), ${ }^{\prime} \mathrm{BuMe}_{2} \mathrm{SiCl}(12.8 \mathrm{~g}, 84.8 \mathrm{mmol}, 1.5$ equiv), and 4-DMAP (696 $\mathrm{mg}, 5.7 \mathrm{mmol}, 0.1$ equiv). The reaction mixture was stirred at $23^{\circ} \mathrm{C}$ for 12 h before an additional 3.0 equiv of $\mathrm{Et}_{3} \mathrm{~N}(23.6 \mathrm{~mL})$ was added, along with 700 mg of $4-\mathrm{DMAP}$ and $\mathrm{Me}_{3} \mathrm{SiCl}(10.7 \mathrm{~mL}, 84.8 \mathrm{mmol}$, 1.5 equiv). A precipitate formed immediately following addition of $\mathrm{Me}_{3} \mathrm{SiCl}$. After 30 min , the pale red mixture was poured into 200 mL of a $1.0 \mathrm{M} \mathrm{K}_{2} \mathrm{HPO}_{4}$ solution. The product was extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 100 \mathrm{~mL})$, and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to a red-brown oil. Purification by chromatography on silica gel (gradient elution, $30: 1 \rightarrow 20: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$) afforded 26.0 $\mathrm{g}(88 \%)$ of 22 as a colorless oil: TLC $R_{f}=0.65$ ($8: 1$ hexanes/EtOAc); $[\alpha]_{\mathrm{Hg}}+150.0^{\circ}\left(c=0.17, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.36$ (dd, $2 \mathrm{H}, J=7.4,1.5 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}$), $7.34-7.31\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.28-7.26$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 4.87\left(\mathrm{~d}, 1 \mathrm{H}, J=11.1 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{Ph}\right), 4.80(\mathrm{~d}, 1 \mathrm{H}, J=$ $11.1 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{Ph}$), 4.47 (ddd, $J=8.5,6.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{3}$), $4.13-4.06$ $\left(\mathrm{m}, 3 \mathrm{H}, \mathrm{H}_{4}, \mathrm{H}_{8}\right), 3.78\left(\mathrm{~d}, 1 \mathrm{H}, J=10.3 \mathrm{~Hz}, \mathrm{H}_{10}\right), 3.60(\mathrm{~d}, 1 \mathrm{H}, J=10.3$
$\mathrm{Hz}, \mathrm{H}_{10}$), $2.47(\mathrm{~s}, 1 \mathrm{H},-\mathrm{C} \equiv \mathrm{CH}), 1.69-1.55\left(\mathrm{~m}, 4 \mathrm{H}\right.$, both $\left.-\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $0.94-0.87\left(\mathrm{~m}, 6 \mathrm{H}\right.$, both $\left.-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.92\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\text {TBS }-\mathrm{Bu}}\right), 0.19(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{H}_{\text {TMS }}\right), 0.09\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\text {TBS }-\mathrm{Me}}\right), 0.07\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\text {TBS }}\right.$ - ${ }^{\text {Me }}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}) \delta 139.0,128.1,127.5,127.2,111.0,83.8,80.1,76.6,76.0$, $75.5,74.3,68.4,65.0,29.8,28.7,25.9,18.3,8.4,8.1,1.9,-5.2,-5.3$; IR (thin film) $v 2930,2857,1463,1359,1251,1129,1102,984,924$, 840, 778; HRMS (EI) calcd for $\mathrm{C}_{28} \mathrm{H}_{48} \mathrm{Si}_{2} \mathrm{O}_{5} 520.3265$, found 520.3045 .

Aldol Adduct 25. To a solution of (S) -benzyloxazolidinone ${ }^{24}$ (20.0 $\mathrm{g}, 85.7 \mathrm{mmol}$) in 400 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$ was added a solution of 25.5 g of $9-\mathrm{BBNOTf}$ ($94.3 \mathrm{mmol}, 1.1$ equiv) in 50.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by neat ${ }^{\prime} \mathrm{Pr}_{2} \mathrm{NEt}(20.9 \mathrm{~mL}, 120.0 \mathrm{mmol}, 1.4$ equiv). The mixture was allowed to stir for 30 min at $-78^{\circ} \mathrm{C}$ and was then warmed to $0^{\circ} \mathrm{C}$, where it was held for an additional 3 h . Upon recooling the contents to $-78^{\circ} \mathrm{C}$, a cold solution $\left(-78^{\circ} \mathrm{C}\right)$ of aldehyde $24(18.1 \mathrm{~g}$, $94.3 \mathrm{mmol}, 1.1$ equiv) in 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was transferred via cannula to the reaction flask. The solution was allowed to warm slowly to 23 ${ }^{\circ} \mathrm{C}$ over 12 h . After cooling to $0^{\circ} \mathrm{C}$, the reaction was diluted with 400 mL of MeOH and 90 mL of a 1.0 M aqueous $\mathrm{K}_{2} \mathrm{HPO}_{4}-\mathrm{H}_{3} \mathrm{PO}_{4}$ solution (pH 7). Careful addition of 180 mL of a $1: 1 \mathrm{MeOH} / 30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ solution resulted in the formation of a milky white suspension, which was stirred vigorously at $0^{\circ} \mathrm{C}$ for 2 h . The mixture was partitioned between 400 mL of $\mathrm{H}_{2} \mathrm{O}$ and 400 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the organic phase was collected, and the aqueous layer was extracted with $2 \times 400 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to a yellow oil. Purification by chromatography on silica gel (gradient elution, $5: 1 \rightarrow 1: 1$ hexanes/EtOAc) gave $25(30.4 \mathrm{~g}, 84 \%)$ as a single diastereomer: TLC $R_{f}=0.12(2: 1$ hexanes/EtOAc $) ;[\alpha]_{\mathrm{Na}}+101.9^{\circ}(c$ $\left.=0.41, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.35-7.33(\mathrm{~m}, 6 \mathrm{H}$, $\left.\mathrm{H}_{\text {arom }}\right), 7.30-7.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.20\left(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}\right), 4.72-$ $4.68\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{N}) \mathrm{Bn}\right), 4.50\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.24-4.18(\mathrm{~m}$, $\left.2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{N}-) \mathrm{Bn}\right), 3.96-3.95\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 3.76$ (ddd, $1 \mathrm{H}, J=$ 14.1, $7.0,2.6 \mathrm{~Hz}, \mathrm{H}_{4^{\prime}}$), $3.48\left(\mathrm{t}, 2 \mathrm{H}, J=6.5 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{Ph}\right), 3.25$ (dd, $\left.1 \mathrm{H}, J=13.4,3.3 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{N}) \mathrm{CH}_{2} \mathrm{Ph}\right), 2.89(\mathrm{~d}, 1 \mathrm{H}, J=3.0$ Hz , secondary -OH), 2.79 (dd, $1 \mathrm{H}, J=13.4,9.5 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{N})-$ $\mathrm{CH}_{2} \mathrm{Ph}$), $1.68-1.55\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{1^{\prime}}, \mathrm{H}_{3^{\prime}}\right), 1.47-1.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2^{\prime}}\right), 1.25(\mathrm{~d}$, $\left.3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{H}_{13}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 177.5,153.0$, $138.6,135.0,129.4,129.0,128.3,127.6,127.45,127.43,72.9,71.4$, $70.2,66.2,55.1,42.1,37.8,33.6,29.6,22.7,10.4$; IR (thin film) v 3512 (br), 2938, 2861, 1779, 1695, 1496, 1454, 1385, 1210, 1109, 738; HRMS (FAB^{+}) calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{NO}_{5} 425.2202$, found $426.2287\left(\mathrm{MH}^{+}\right)$.

Diol 27. To a solution of aldol adduct $25(28.0 \mathrm{~g}, 65.8 \mathrm{mmol})$ in 1 L of a $3: 1 \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ mixture at $0^{\circ} \mathrm{C}$ was added $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(26.4 \mathrm{~mL}$, 264 mmol, 4.0 equiv) dropwise. $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(5.5 \mathrm{~g}, 132 \mathrm{mmol}, 2.0$ equiv) was transferred in five equal portions to the reaction flask. Stirring continued at $0^{\circ} \mathrm{C}$ for 3 h before 200 mL of a 1.5 M aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$ solution (4.5 equiv) was carefully added. The mixture was made alkaline by the addition of 250 mL of saturated aqueous NaHCO_{3}, then acidified to $\mathrm{pH}=1$ with $\sim 500 \mathrm{~mL}$ of a $10 \% \mathrm{v} / \mathrm{v} \mathrm{HCl}$ solution. The organic phase was collected, and the aqueous layer was extracted with $4 \times 750 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to a pale orange, viscous oil (17.5 g). The product was used without further purification.

A solution of the unpurified acid ($17.5 \mathrm{~g}, 65.8 \mathrm{mmol}$) in 500 mL of THF was cooled to $0^{\circ} \mathrm{C}$, and solid $\mathrm{LiAlH}_{4}(11.4 \mathrm{~g}, 300.0 \mathrm{mmol})$ was cautiously added portionwise. Following addition, the gray suspension was heated to reflux. After 8 h at reflux, the mixture was cooled to 0 ${ }^{\circ} \mathrm{C}$, diluted with 250 mL of $\mathrm{Et}_{2} \mathrm{O}$, and quenched by the dropwise addition of 500 mL of a $10 \% \mathrm{v} / \mathrm{v} \mathrm{HCl}$ solution. The ethereal layer was collected and the aqueous phase extracted with $3 \times 400 \mathrm{~mL}$ of $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure to afford a pale orange oil. Purification of the residue by chromatography on silica gel (gradient elution, $2: 1 \rightarrow 1: 3 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}$) furnished the diol 27 as a white solid ($15.2 \mathrm{~g}, 92 \%$): TLC $R_{f}=0.30\left(1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}\right)$; mp $43-44{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{Na}}+40.8\left(c=0.42, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 7.35-7.34\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.33-7.28\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 4.50(\mathrm{~s}$, $\left.2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 3.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4^{\prime}}\right), 3.69\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{6^{\prime}}\right), 3.49(\mathrm{dt}, 2 \mathrm{H}, J=$ $\left.6.3,1.6 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{Ph}\right), 2.47$ (br s, 2 H , primary -OH and secondary $-\mathrm{OH}), 1.78-1.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5^{\prime}}\right), 1.68-1.51\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{1^{\prime}}, \mathrm{H}_{3^{\prime}}\right), 1.49-$ $1.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2^{\prime}}\right), 0.90\left(\mathrm{~d}, 3 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{H}_{13}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}) \delta 138.5,128.4,127.7,127.6,74.5,73.0,70.3,67.2,39.1$, 33.7, 29.6, 22.9, 10.1; IR (thin film) $v 3367$ (br), 2935, 1361, 1099 ,

1027, 734, 696. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{24} \mathrm{O}_{3}: \mathrm{C}, 71.39 ; \mathrm{H}, 9.59$. Found: C, 71.25; H, 9.51 .

Tosylate 28. To an ice-cold solution of diol $27(15.0 \mathrm{~g}, 59.5 \mathrm{mmol})$ in 300 mL of pyridine was added solid $p-\mathrm{TsCl}(11.3 \mathrm{~g}, 59.5 \mathrm{mmol}, 1.0$ equiv). The solution was stirred at $0^{\circ} \mathrm{C}$ for 42 h and then partitioned between 300 mL of a $10 \% \mathrm{v} / \mathrm{v} \mathrm{HCl}$ solution and 400 mL of $\mathrm{Et}_{2} \mathrm{O}$. The ethereal layer was collected and washed with 300 mL of $10 \% \mathrm{v} / \mathrm{v} \mathrm{HCl}$. The combined aqueous portions were extracted with $3 \times 300 \mathrm{~mL}$ of $\mathrm{Et}_{2} \mathrm{O}$. The ethereal extracts were washed successively with 1×400 mL of $10 \% \mathrm{v} / \mathrm{v} \mathrm{HCl}, 1 \times 400 \mathrm{~mL}$ of 0.2 M aqueous CuSO_{4}, and $1 \times$ 400 mL of saturated aqueous NaCl and then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the $\mathrm{Et}_{2} \mathrm{O}$ under reduced pressure yielded a pale brown residue which was purified by chromatography on silica gel (gradient elution, $5: 1 \rightarrow 1: 1$ hexanes/EtOAc) to give the product 28 as a colorless oil $(21.5 \mathrm{~g}, 89 \%):$ TLC $R_{f}=0.62(1: 1$ hexanes/EtOAc $) ;[\alpha]_{\mathrm{Na}}+45.8^{\circ}$ $\left(c=0.38, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.79(\mathrm{~d}, 2 \mathrm{H}, J=$ $\left.8.2 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}\right), 7.36-7.32\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.31-7.27\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$, $4.50\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.06\left(\mathrm{dd}, 1 \mathrm{H}, J=9.7,7.9 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right), 3.88$ (dd, $\left.1 \mathrm{H}, J=9.7,6.0 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right), 3.70\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4^{\prime}}\right), 3.49-3.45(\mathrm{~m}, 2 \mathrm{H}$, $\left.-\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{Ph}\right), 2.45\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{SO}_{2} \mathrm{ArCH}_{3}\right), 1.91-1.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5^{\prime}}\right)$, $1.67-1.34\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}_{1^{\prime}}, \mathrm{H}_{2^{\prime}}, \mathrm{H}_{3}\right), 0.84\left(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{H}_{13^{\prime}}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 144.8,138.6,133.1,129.9,128.4,127.9$, $127.7,127.5,72.9,72.7,70.5,70.2,37.8,34.1,29.6,22.9,21.6,9.5$; IR (thin film) $v 3433$ (br), 2938, 2861, 1598, 1495, 1454, 1357, 1188, 1176, 1097, 963, 814, 737. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{SO}_{5}: \mathrm{C}, 65.00 ; \mathrm{H}$, 7.44. Found: C, 64.94; H, 7.53.

Alcohol 30. A 1.3 M solution of $\mathrm{PhLi}(64.5 \mathrm{~mL}, 83.8 \mathrm{mmol}, 1.5$ equiv) in $70: 30$ cyclohexane/Et $t_{2} \mathrm{O}$ was added dropwise to a solution of $28(22.7 \mathrm{~g}, 55.8 \mathrm{mmol})$ in 500 mL of THF at $0^{\circ} \mathrm{C}$. The mixture was warmed to $23^{\circ} \mathrm{C}$ and stirred for 30 min and then transferred via cannula over a 1 h period to a solution of $\mathrm{PhLi}\left(1.3 \mathrm{M} c\right.$-hex $/ \mathrm{Et}_{2} \mathrm{O}, 129.0 \mathrm{~mL}$, $167.6 \mathrm{mmol}, 3.0$ equiv) and $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ ($21.0 \mathrm{~mL}, 167.6 \mathrm{mmol}, 3.0$ equiv) in 250 mL of THF at $-78^{\circ} \mathrm{C}$. Following addition, the reaction was warmed to $0^{\circ} \mathrm{C}$ over 1 h and then quenched by addition of 600 mL of saturated aqueous NaHCO_{3}. The aqueous phase was collected and extracted with $3 \times 300 \mathrm{~mL}$ of $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed once with saturated aqueous $\mathrm{NaCl}(500 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification of the isolated brown residue by chromatography on silica gel (gradient elution, 7:1 $\rightarrow 3: 1$ hexanes/EtOAc) afforded $15.8 \mathrm{~g}(91 \%)$ of 30 as a clear, colorless oil: TLC $R_{f}=0.23(4: 1$ hexanes $/ E t O A c) ;[\alpha]_{\mathrm{Na}}+4.5^{\circ}\left(c=0.43, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;$ ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.36-7.34\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.31-7.27$ (m, 3H, $\mathrm{H}_{\text {arom }}$), $7.21-7.17\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 4.50\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 3.55-$ $3.51\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4^{\prime}}\right), 3.48\left(\mathrm{t}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{Ph}\right), 2.78(\mathrm{dd}$, $1 \mathrm{H}, J=13.4,6.3 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}$), 2.46 (dd, $\left.1 \mathrm{H}, J=13.4,8.6 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right), 1.85-$ $1.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5^{\prime}}\right), 1.83-1.34\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}_{1^{\prime}}, \mathrm{H}_{2^{\prime}}, \mathrm{H}_{3^{\prime}}\right), 0.85(\mathrm{~d}, 3 \mathrm{H}, J=$ $\left.\left.6.9 \mathrm{~Hz}, \mathrm{H}_{13}{ }^{\prime}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} \mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 141.2,138.6,129.1$, 128.33, 128.25, 127.6, 127.5, 125.8, 74.1, 72.9, 70.3, 40.3, 39.9, 34.5, 29.7, 23.0, 13.1; IR (thin film) v 3419 (br), 2935, 1494, 1452, 1359 , 1099, 735; HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{2} 312.2089$, found $313.2167\left(\mathrm{MH}^{+}\right)$.

C(1) Alkyl Side Chain Alcohol 31. To a solution of alcohol 30 $(4.80 \mathrm{~g}, 15.4 \mathrm{mmol})$ in 150 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 4-DMAP (2.40 $\mathrm{g}, 20.0 \mathrm{mmol}, 1.3$ equiv), followed by ${ }^{\mathrm{BuCOCl}}(2.50 \mathrm{~mL}, 20.0 \mathrm{mmol}$, 1.3 equiv). The reaction was heated at reflux for 16 h . After cooling to $23^{\circ} \mathrm{C}$, the mixture was poured into 200 mL of saturated aqueous NaHCO_{3}. The aqueous phase was collected and extracted with $2 \times$ 200 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with $1 \times 250 \mathrm{~mL}$ of saturated aqueous NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification of the product by chromatography on silica gel (gradient elution, 20:1 \rightarrow 15:1 hexanes/ $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ gave $5.5 \mathrm{~g}(90 \%)$ of the pivaloate ester 30^{\prime} as a colorless oil: TLC $R_{f}=0.71$ (hexanes/EtOAc); $[\alpha]_{\mathrm{Na}}+70.8^{\circ}\left(c=0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.36-7.33\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.32-7.26$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.18\left(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}\right), 7.11$ (d, $2 \mathrm{H}, J=7.2$ $\left.\mathrm{Hz}, \mathrm{H}_{\text {arom }}\right), 4.89\left(\mathrm{dt}, 1 \mathrm{H}, J=8.4,4.2 \mathrm{~Hz}, \mathrm{H}_{4^{\prime}}\right), 4.49\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{OCH}_{2} \mathrm{Ph}\right)$, $3.46\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.5 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{Ph}\right), 2.75(\mathrm{dd}, 1 \mathrm{H}, J=13.4,5.0$ $\left.\mathrm{Hz}, \mathrm{H}_{6^{\prime}}\right), 2.30\left(\mathrm{dd}, 1 \mathrm{H}, J=13.4,9.6 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right), 1.99-1.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5^{\prime}}\right)$, $1.72-1.54\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{1^{\prime}}, \mathrm{H}_{3^{\prime}}\right), 1.40-1.28\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2^{\prime}}\right), 1.25\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\text {Piv. }}\right.$ $\left.{ }^{\prime} \mathrm{Bu}\right), 0.86\left(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H}_{13}\right)^{\prime}$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ $178.0,140.7,138.7,129.1,128.33,128.26,127.6,127.5,125.9,76.2$, $72.9,70.1,39.51,39.49,38.7,31.1,29.6,27.3,22.4,13.9$; IR (thin
film) $v 2935,2866,1724,1603,1496,1479,1454,1396,1362,1283$, 1163, 1102, 1029, 736; HRMS (FAB ${ }^{+}$) calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{3} 396.2664$, found $397.2729\left(\mathrm{MH}^{+}\right)$.

Palladium on carbon ($5 \%, 2.0 \mathrm{~g}, 25 \mathrm{wt} \%$) was suspended in a 200 mL EtOAc solution of $\mathbf{3 0}(8.50 \mathrm{~g}, 21.4 \mathrm{mmol})$. The slurry was stirred at $23^{\circ} \mathrm{C}$ under 1 atm of H_{2} for 12 h . Removal of the palladium catalyst by filtration through Celite, followed by evaporation of the filtrate under reduced pressure, afforded $6.5 \mathrm{~g}(99 \%)$ of a colorless oil. The alcohol 31 was used without further purification: TLC $R_{f}=0.17$ (4:1 hexanes/ EtOAc $) ;[\alpha]_{\mathrm{Na}}+68.5^{\circ}\left(c=0.31, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ $\delta 7.27\left(\mathrm{t}, 2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}\right), 7.19\left(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}\right), 7.11$ $\left(\mathrm{d}, 2 \mathrm{H}, J=7.11 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}\right), 4.89\left(\mathrm{dt}, 1 \mathrm{H}, J=8.3,4.2 \mathrm{~Hz}, \mathrm{H}_{4^{\prime}}\right), 3.62(\mathrm{t}$, $\left.2 \mathrm{H}, J=6.5 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{OH}\right), 2.74\left(\mathrm{dd}, 1 \mathrm{H}, J=13.4,5.2 \mathrm{~Hz}, \mathrm{H}_{6}\right.$), 2.31 (dd, $1 \mathrm{H}, J=13.4,9.4 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}$), $1.99-1.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5^{\prime}}\right), 1.70-1.50$ ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}_{1^{\prime}}, \mathrm{H}_{3^{\prime}}$), 1.41-1.29 (m, $3 \mathrm{H}, \mathrm{H}_{2^{\prime}}$ and $-\mathrm{OH}_{1^{\circ}}$), $1.25\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\text {Piv- }}\right.$ $\left.{ }^{\prime} \mathrm{Bu}\right), 0.87\left(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H}_{13^{\prime}}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ $178.2,140.7,129.1,128.3,125.9,76.0,62.9,39.6,39.1,38.7,32.5$, $31.1,27.3,21.8,13.9$; IR (thin film) $v 3428$ (br), 3026, 2935, 2871, $1724,1602,1495,1480,1457,1396,1284,1164,1058,963,744$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$: C, 74.46; $\mathrm{H}, 9.87$. Found: $\mathrm{C}, 74.05 ; \mathrm{H}, 10.16$.

C(1) Alkyl Side Chain Aldehyde 32. Dimethyl sulfoxide (6.00 $\mathrm{mL}, 84.0 \mathrm{mmol}, 4.0$ equiv) was added dropwise to a solution of oxalyl chloride ($3.70 \mathrm{~mL}, 42.0 \mathrm{mmol}, 2.0$ equiv) in 100 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at -78 ${ }^{\circ} \mathrm{C}$. Following gas evolution, the mixture was stirred for 10 min before a solution of alcohol $31(6.30 \mathrm{~g}, 20.6 \mathrm{mmol})$ in 75.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise over 45 min . The resulting white suspension was stirred at $-78^{\circ} \mathrm{C}$ for an additional 30 min . Triethylamine $(16.7 \mathrm{~mL}$, $120 \mathrm{mmol}, \sim 6.0$ equiv) was then added dropwise, causing the solution to clear. The solution was stirred at $-78^{\circ} \mathrm{C}$ for $15-20 \mathrm{~min}$ before warming to $0^{\circ} \mathrm{C}$. The reaction was quenched at $0^{\circ} \mathrm{C}$ with 200 mL of a 1.0 M aqueous $\mathrm{KH}_{2} \mathrm{PO}_{4}$ solution. The organic layer was collected, and the aqueous phase was extracted with $3 \times 100 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification of the yellow residue by chromatography on silica gel (gradient elution, 8:1 $\rightarrow 6: 1$ hexanes/EtOAc) gave 32 as a colorless oil ($6.0 \mathrm{~g}, 96 \%$): TLC $R_{f}=0.48\left(4: 1\right.$ hexanes/EtOAc); $[\alpha]_{\mathrm{Na}}+60.2^{\circ}$ $\left(c=0.34, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 9.74(\mathrm{t}, 1 \mathrm{H}, J=$ $1.4 \mathrm{~Hz},-\mathrm{CHO}$), $7.27\left(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}\right), 7.19(\mathrm{t}, 1 \mathrm{H}, J=7.4$ $\left.\mathrm{Hz}, \mathrm{H}_{\text {arom }}\right), 7.11\left(\mathrm{~d}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}\right), 4.88(\mathrm{dt}, 1 \mathrm{H}, J=8.2,3.9$ $\left.\mathrm{Hz}, \mathrm{H}_{4}\right), 2.74\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=13.4,5.3 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right), 2.46-2.41\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}_{2^{-}}\right.$ CHO), 2.31 (dd, $\left.1 \mathrm{H}, J=13.4,9.3 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right), 1.99-1.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5^{\prime}}\right)$, $1.70-1.52\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{2^{\prime}}, \mathrm{H}_{3^{\prime}}\right), 1.26\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\text {Piv- }}\right.$ 'Bu $), 0.87(\mathrm{~d}, 3 \mathrm{H}, J=6.8$ $\left.\mathrm{Hz}, \mathrm{H}_{13}{ }^{\prime}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 201.9,178.1,140.5,129.0$, $128.3,125.9,75.4,43.4,39.4,39.0,38.7,30.7,27.3,18.1,13.9$; IR (thin film) $v 3026,2968,2873,2719,1724,1495,1480,1455,1396$, 1283, 1163, 1031, 961, 743. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{3}: \mathrm{C}, 74.96 ; \mathrm{H}$, 9.27. Found: C, 74.49; H, 9.56 .

Propargylic Alcohol 34. To a solution of alkyne 22 ($15.4 \mathrm{~g}, 29.6$ mmol, 1.5 equiv) in 150 mL of THF at $-45^{\circ} \mathrm{C}$ was slowly added a 1.6 M solution of ${ }^{n} \mathrm{BuLi}$ in hexanes $(16.0 \mathrm{~mL}, 25.6 \mathrm{mmol}, 1.3$ equiv). The mixture was held at $-45^{\circ} \mathrm{C}$ for 45 min , and then a 4.0 M solution of LiBr in THF ($2.5 \mathrm{~mL}, 9.9 \mathrm{mmol}, 0.5$ equiv) was added. After the mixture was stirred for 10 min , a cold solution $\left(-45^{\circ} \mathrm{C}\right)$ of $32(6.0 \mathrm{~g}$, 19.7 mmol) in 34.0 mL of THF was added via cannula over 40 min . Following addition, the reaction was stirred for 10 min and then quenched with 200 mL of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The mixture was partitioned with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{~mL})$, the organic phase was collected, and the aqueous phase was extracted with $3 \times 150 \mathrm{~mL}$ of $\mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to a pale yellow oil. Purification by chromatography on silica gel (gradient elution, $10: 1 \rightarrow 2: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$) afforded 15.2 g (93\%) of 34 as a clear, colorless oil. Recovery of excess starting acetylene 22 was essentially quantitative (5.0 g). The product was isolated as a mixture of $\mathrm{C}(1)$ alcohol epimers: TLC $R_{f}=0.49$ (4:1 hexanes/EtOAc);
 $\left.J=7.4 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}\right), 7.10\left(\mathrm{~d}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}\right), 4.89(\mathrm{~d}, 1 \mathrm{H}, J=$ $\left.11.2 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.85\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right)^{\prime}, 4.77\left(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz},-\mathrm{OCH}_{2}-\right.$ Ph), 4.46 (ddd, $\left.J=8.5,6.6,1.9 \mathrm{~Hz}, \mathrm{H}_{3}\right), 4.30-4.26\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{1}\right), 4.12-$ $4.05\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{4}\right.$ and $\left.\mathrm{H}_{8}\right), 3.74$ (two d, $1 \mathrm{H}, J=10.2 \mathrm{~Hz}, \mathrm{H}_{10}+$ epimer), $3.56\left(\mathrm{~d}, 1 \mathrm{H}, J=10.2 \mathrm{~Hz}, \mathrm{H}_{10}\right), 2.72\left(\mathrm{dd}, 1 \mathrm{H}, J=13.4,5.0 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right)$, $2.29\left(\mathrm{dd}, 1 \mathrm{H}, J=13.4,9.4 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right.$), $1.99-1.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5^{\prime}}\right), 1.69-$ $1.35\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{H}_{1^{\prime}}, \mathrm{H}_{2^{\prime}}, \mathrm{H}_{3^{\prime}}\right.$ and both $\left.-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.24\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\mathrm{Piv} \cdot \mathrm{Bu}}\right)$,
$0.93-0.85\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H}_{13^{\prime}}\right.$ and both $\left.-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.91\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\text {tes }} \mathrm{s}^{\mathrm{sux}}\right), 0.18$ ($\mathrm{s}, 9 \mathrm{H}, \mathrm{H}_{\text {tмs }}$), 0.08 (s, $3 \mathrm{H}, \mathrm{H}_{\text {tis-me }}$), 0.06 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{\text {tвs-me }}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 178.02,178.00,140.6,139.1,129.1,128.3,128.1$, $127.3,127.2,125.9,111.1,110.4,88.37,88.35,84.5,80.44,80.35$, $76.6,75.86,75.82,75.4,74.3,68.3,65.0,62.1,39.5,39.0,38.66,38.62$, $37.31,37.27,30.82,30.77,29.7,28.6,27.3,25.9,21.41,21.37,18.3$, 13.9, 8.3, 8.1, 1.98, 1.93, -5.2, -5.3; IR (thin film) v 3464 (br) 2956, 1726, 1462, 1361, 1284, 1250, 1159, 1131, 1100, 984, 842, 778. Anal. Calcd for $\mathrm{C}_{47} \mathrm{H}_{76} \mathrm{Si}_{2} \mathrm{O}_{8}: \mathrm{C}, 68.40 ; \mathrm{H}, 9.28$. Found: C, $68.40 ; \mathrm{H}, 8.92$.

Ynone 35. To a solution of alcohol $34(15.1 \mathrm{~g}, 18.3 \mathrm{mmol})$ in 150 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 15.5 g ($36.6 \mathrm{mmol}, 2.0$ equiv) of the DessMartin periodinane. ${ }^{31}$ The resulting white suspension was stirred at $23^{\circ} \mathrm{C}$ for 5 h . To the reaction mixture was then added 300 mL of pentane. The resulting precipitates were removed by filtration through Celite. The filtrate was concentrated in vacuo and the isolated pale yellow residue purified by chromatography on silica gel (gradient elution, $15: 1 \rightarrow 10: 1$ hexanes $/ \mathrm{E}_{2} \mathrm{O}$) to afford $14.0 \mathrm{~g}(93 \%)$ of 35 : TLC $R_{f}=0.54(6: 1$ hexanes $/ \mathrm{EtOAc}) ;[\alpha]_{\mathrm{Na}}+57.8^{\circ}\left(c=0.38, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.36-7.25\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.18(\mathrm{t}, 1 \mathrm{H}, J$ $=7.4 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}$), $7.10\left(\mathrm{~d}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}\right), 4.89(\mathrm{~d}, 1 \mathrm{H}, J=$ $\left.11.2 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.85-4.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4^{\prime}}\right), 4.76(\mathrm{~d}, 1 \mathrm{H}, J=11.2$ $\left.\mathrm{Hz},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.42\left(\mathrm{ddd}, J=8.4,6.5,2.0 \mathrm{~Hz}, \mathrm{H}_{3}\right), 4.11(\mathrm{~d}, 1 \mathrm{H}, J=$ $\left.2.0 \mathrm{~Hz}, \mathrm{H}_{4}\right), 4.08-4.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{8}\right), 3.73\left(\mathrm{~d}, 1 \mathrm{H}, J=10.2 \mathrm{~Hz}, \mathrm{H}_{10}\right)$, $3.65\left(\mathrm{~d}, 1 \mathrm{H}, J=10.2 \mathrm{~Hz}, \mathrm{H}_{10}\right), 2.73\left(\mathrm{dd}, 1 \mathrm{H}, J=13.4,5.0 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right)$, $2.49\left(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H}_{1^{\prime}}\right), 2.27\left(\mathrm{dd}, 1 \mathrm{H}, J=13.4,9.6 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right)$, $1.99-1.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5^{\prime}}\right), 1.67-1.49\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{2^{\prime}}, \mathrm{H}_{3^{\prime}}\right.$ and both $\left.-\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $1.24\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\text {piv }} \cdot \mathrm{Bu}\right), 0.93-0.88\left(\mathrm{~m}, 6 \mathrm{H}\right.$, both $\left.-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.92(\mathrm{~s}, 9 \mathrm{H}$, $\mathrm{H}_{\text {TBS } . ~}^{\text {'Bu }}$) $), 0.84\left(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H}_{13^{\prime}}\right), 0.20\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\text {TMS }}\right), 0.09(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{H}_{\text {TBs-Me }}$), 0.07 (s, $3 \mathrm{H}, \mathrm{H}_{\text {Tвs-Me }}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$) δ 185.8, 177.9, 140.5, 138.6, 129.1, 128.3, 128.2, 127.46, 127.36, 125.95, $111.4,91.0,85.9,80.4,76.2,75.7,75.1,67.9,65.1,44.8,39.4,39.0$, $38.6,30.4,29.7,28.6,27.3,25.8,19.5,18.3,13.9,8.3,8.1,1.8,-5.32$, -5.37 ; IR (thin film) $v 2957,2933,2212,1726,1680,1462,1360$, 1282, 1252, 1159, 1104, 921, 843, 778, 699; HRMS $^{\left(\mathrm{FAB}^{+}\right) \text {calcd for }}$ $\mathrm{C}_{47} \mathrm{H}_{74} \mathrm{Si}_{2} \mathrm{O}_{8} 822.4922$, found $823.5022\left(\mathrm{MH}^{+}\right)$.

Trans Enone 36. To a suspension of $\left[\mathrm{Cr}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right]_{2}(31.7 \mathrm{~g}, 84.4$ $\mathrm{mmol}, 5.0$ equiv) in 50.0 mL of degassed THF was added a solution of ynone $35(13.9 \mathrm{~g}, 16.9 \mathrm{mmol})$ in 310 mL of degassed THF, followed by 36.0 mL of deoxygenated $\mathrm{H}_{2} \mathrm{O}$. The reaction was warmed to 65 ${ }^{\circ} \mathrm{C}$ and stirred for 2 weeks. Filtration of the reaction mixture through Celite removed most of the insoluble salts. The filter cake was rinsed thoroughly with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$, and the combined filtrates were concentrated to a pale blue oil. Purification by chromatography on silica gel (gradient elution, 12:1 $\rightarrow 8: 1$ hexanes $/ \mathrm{Et}_{2} \mathrm{O}$) furnished 36 (8.3 g. 60%) as a colorless oil: TLC $R_{f}=0.51\left(6: 1\right.$ hexanes/EtOAc); $[\alpha]_{\mathrm{Na}}$ $+319.5^{\circ}\left(c=0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.36-$ $7.25\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.18\left(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{arom}}\right), 7.12(\mathrm{~d}, 2 \mathrm{H}, J=$ $7.0 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}$) $6.80\left(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}, \mathrm{H}_{6}\right), 6.29(\mathrm{~d}, 1 \mathrm{H}, J=15.9$ $\left.\mathrm{Hz}, \mathrm{H}_{7}\right), 4.96\left(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.87-4.85(\mathrm{~m}, 1 \mathrm{H}$, H^{4}), $4.61\left(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.38$ (ddd, $J=8.5,6.6,1.8$ $\left.\mathrm{Hz}, \mathrm{H}_{3}\right), 4.09\left(\mathrm{~d}, 1 \mathrm{H}, J=1.7 \mathrm{~Hz}, \mathrm{H}_{4}\right), 3.79\left(\mathrm{t}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{H}_{8}\right)$, $3.73\left(\mathrm{t}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{H}_{8}\right), 3.71\left(\mathrm{~d}, 1 \mathrm{H}, J=10.5 \mathrm{~Hz}, \mathrm{H}_{10}\right), 3.57(\mathrm{~d}$, $\left.1 \mathrm{H}, J=10.5 \mathrm{~Hz}, \mathrm{H}_{10}\right), 2.75\left(\mathrm{dd}, 1 \mathrm{H}, J=13.4,5.0 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right), 2.51(\mathrm{t}$, $\left.1 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{H}_{1}{ }^{\prime}\right), 2.28\left(\mathrm{dd}, 1 \mathrm{H}, J=13.4,9.6 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right), 1.99-1.94$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{5^{\prime}}$), $1.67-1.55\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{2^{\prime}}, \mathrm{H}_{3^{\prime}}\right.$ and both $-\mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.25(\mathrm{~s}$, $9 \mathrm{H}, \mathrm{H}_{\text {piv. }{ }^{\prime} \text { Bu }}$), $0.91-0.87\left(\mathrm{~m}, 6 \mathrm{H}\right.$, both $-\mathrm{CH}_{2} \mathrm{CH}_{3}$), 0.89 (s, $9 \mathrm{H}, \mathrm{H}_{\text {TBs }}$. ${ }^{\prime} \mathrm{Bu}$), 0.86 (d, $3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{H}_{13}$), 0.18 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{H}_{\mathrm{Tms}}$), 0.02 ($\mathrm{s}, 3 \mathrm{H}$,
 178.0, 146.3, 140.6, 138.7, 130.2, 129.1, 128.32, 128.26, 127.5, 127.4, $125.9,111.3,80.7,80.5,76.4,75.9,74.9,66.5,64.9,40.0,39.5,38.6$, $30.7,29.6,28.2,27.3,26.0,19.8,18.4,13.8,8.3,8.1,2.4,-5.36,-5.41$; IR (thin film) $v 2956,1725,1676,1636,1459,1361,1283,1251,1161$, 1108, 991, 925, 838, 777, 699. Anal. Calcd for $\mathrm{C}_{47} \mathrm{H}_{76} \mathrm{Si}_{2} \mathrm{O}_{8}$: C, 68.40; H, 9.28. Found: C, 68.47; H, 8.98.

Trans Enone Diol 45. A solution of enone $36(2.50 \mathrm{~g}, 3.03 \mathrm{mmol})$ in 60.0 mL of THF at $0{ }^{\circ} \mathrm{C}$ was treated with 6.7 mL of a 1.0 M THF solution of " $\mathrm{Bu} \mathrm{u}_{4} \mathrm{NF}$ ($6.7 \mathrm{mmol}, 2.2$ equiv). The resulting yellow solution was stirred for 45 min and then partitioned between 75 mL of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and 50 mL of $\mathrm{Et}_{2} \mathrm{O}$. The organic phase was collected, and the aqueous layer was extracted with $3 \times 75 \mathrm{~mL} \mathrm{Et}_{2} \mathrm{O}$. The combined organic extracts were washed with $1 \times 100 \mathrm{~mL}$ of saturated aqueous NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated under reduced
pressure. Purification of the product by chromatography on silica gel (gradient elution, 2:1 \rightarrow 1:1 hexanes/EtOAc) afforded the product 45 as a colorless oil ($1.8 \mathrm{~g}, 93 \%$): TLC $R_{f}=0.19$ ($2: 1$ hexanes/EtOAc); $[\alpha]_{\mathrm{Na}}+104.4^{\circ}\left(c=0.27, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.39-$ $7.25\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.18\left(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}\right.$), $7.11(\mathrm{~d}, 2 \mathrm{H}, J=$ $7.0 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}$) $6.95\left(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}, \mathrm{H}_{6}\right), 6.53(\mathrm{~d}, 1 \mathrm{H}, J=15.9$ $\left.\mathrm{Hz}, \mathrm{H}_{7}\right), 4.88-4.85\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 4.79\left(\mathrm{~d}, 1 \mathrm{H}, J=11.3 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{Ph}\right)$, $4.63\left(\mathrm{~d}, 1 \mathrm{H}, J=11.3 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.13(\mathrm{~d}, 1 \mathrm{H}, J=1.7 \mathrm{~Hz}$, tertiary $-\mathrm{OH}), 4.07-4.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{4}\right.$ and $\left.\mathrm{H}_{8}\right), 3.80-3.73\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{10}\right), 3.64-$ $3.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 3.43$ (dd, $1 \mathrm{H}, J=11.6,3.5 \mathrm{~Hz}, \mathrm{H}_{8}$), 2.74 (dd, 1H, J $\left.=13.4,5.0 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right), 2.58-2.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{1^{\prime}}\right), 2.31-2.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{6^{\prime}}\right.$ and primary -OH$), 1.98-1.96\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5^{\prime}}\right), 1.68-1.55\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{2}\right.$, $\mathrm{H}_{3^{\prime}}$ and both $-\mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.24\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\mathrm{Piv} \cdot} \cdot \mathrm{Bu}\right), 0.91(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}$, $\left.-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.85\left(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H}_{13}\right), 0.82(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}$, $-\mathrm{CH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 199.3, 178.1, 144.9, 140.6, $137.5,130.4,129.1,128.5,128.3,128.2,128.0,125.9,114.0,79.3$, $78.8,76.3,75.7,74.9,68.6,65.6,40.4,39.5,39.1,38.6,30.7,29.7$, 28.8, 27.3, 19.9, 13.8, 8.1, 8.0; IR (thin film) $v 3470$ (br), 3028, 2971, 2937, 2880, 1723, 1632, 1480, 1455, 1397, 1379, 1284, 1164, 1078, 1058, 990, 918, 735, 700. Anal. Calcd for $\mathrm{C}_{38} \mathrm{H}_{54} \mathrm{O}_{8}: \mathrm{C}, 71.44 ; \mathrm{H}$, 8.52. Found: C, 71.39 ; H, 8.63.

Dimethylacetonide Enone 51. A solution of enone $45(8.0 \mathrm{mg}$, $12.5 \mu \mathrm{~mol}$) in 1.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with $12 \mu \mathrm{~L}$ of 2 -methoxypropene ($125 \mu \mathrm{~mol}, 10$ equiv) and a catalytic amount of anhydrous p-toluenesulfonic acid ($1 \mathrm{mg}, 4 \mu \mathrm{~mol}, 0.3$ equiv). After 1 h , the mixture was poured into 4 mL of a 1:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ saturated aqueous NaHCO_{3} solution. The organic phase was isolated, and the aqueous layer was extracted with $2 \times 3 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to an oily residue. Purification by chromatography on silica gel (9:1 hexanes/EtOAc) afforded $8 \mathrm{mg}(94 \%)$ of $\mathbf{5 1}$ as a colorless oil: TLC $R_{f}=0.46$ ($4: 1$ hexanes/EtOAc); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.38-7.31(\mathrm{~m}, 5 \mathrm{H}$, $\left.\mathrm{H}_{\text {arom }}\right), 7.30-7.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.18\left(\mathrm{t}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}\right), 7.11$ (d, $2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}$) $, 6.87\left(\mathrm{~d}, 1 \mathrm{H}, J=15.9 \mathrm{~Hz}, \mathrm{H}_{6}\right), 6.39(\mathrm{~d}, 1 \mathrm{H}$, $J=15.9 \mathrm{~Hz}, \mathrm{H}_{7}$), 4.98 (d, $\left.1 \mathrm{H}, J=11.5 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.87-4.86$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 4.67\left(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.35-4.30(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{H}_{3}\right), 4.05\left(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{H}_{10}\right), 3.96\left(\mathrm{~d}, 1 \mathrm{H}, J=1.9 \mathrm{~Hz}, \mathrm{H}_{4}\right), 3.78$ $\left(\mathrm{t}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{H}_{8}\right), 3.73\left(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, \mathrm{H}_{10}\right), 3.74-3.71(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{H}_{8}\right), 2.75\left(\mathrm{dd}, 1 \mathrm{H}, J=13.3,5.0 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right), 2.53(\mathrm{t}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}$, $\left.\mathrm{H}_{1^{\prime}}\right), 2.29\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=13.5,9.7 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right), 1.99-1.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5^{\prime}}\right)$, $1.71-1.54\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{2^{\prime}}, \mathrm{H}_{3^{\prime}}\right.$ and both $\left.-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.46\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right)$, $1.39\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.25\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\mathrm{Pv}}, \mathrm{Bu}^{\prime}\right), 0.92-0.86\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H}_{13^{\prime}}\right.$ and both $-\mathrm{CH}_{2} \mathrm{CH}_{3}$); IR (thin film) $v 2970,1723,1636,1458,1371,1282$, 1162, 1075, 700; HRMS $\left(\mathrm{Cl}^{+}\right)$calcd for $\mathrm{C}_{41} \mathrm{H}_{58} \mathrm{O}_{8} 678.4131$, found $679.4208\left(\mathrm{MH}^{+}\right)$.

Carbonate Enone 52. To a solution of enone $\mathbf{4 5}(20.0 \mathrm{mg}, 31.3$ $\mu \mathrm{mol}$) in 2.0 mL of pyridine at $0^{\circ} \mathrm{C}$ was added solid triphosgene (13.0 $\mathrm{mg}, 45.0 \mu \mathrm{~mol}, 1.5$ equiv) in a single portion. A white precipitate formed instantaneously upon addition. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min and then allowed to warm over a 2 h period to 23 ${ }^{\circ} \mathrm{C}$, during which time the solution became homogeneous. The volatiles were removed in vacuo to leave a pale yellow residue, which was purified by chromatography on silica gel ($5: 1$ hexanes/EtOAc). The product 52 was isolated as a clear, colorless oil ($20 \mathrm{mg}, 96 \%$): TLC $R_{f}=0.34$ (4:1 hexanes/EtOAc); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.40-$ $7.27\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.19\left(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}\right), 7.11(\mathrm{~d}, 2 \mathrm{H}, J=$ $7.1 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}$), $6.91\left(\mathrm{~d}, 1 \mathrm{H}, J=15.7 \mathrm{~Hz}, \mathrm{H}_{6}\right), 6.48(\mathrm{~d}, 1 \mathrm{H}, J=15.8$ $\left.\mathrm{Hz}, \mathrm{H}_{7}\right), 4.88-4.85\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4^{\prime}}\right), 4.79\left(\mathrm{~d}, 1 \mathrm{H}, J=11.1 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{Ph}\right)$, $4.74\left(\mathrm{~d}, 1 \mathrm{H}, J=11.1 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.49\left(\mathrm{~d}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}, \mathrm{H}_{10}\right)$, 4.17 (d, $\left.1 \mathrm{H}, J=8.5 \mathrm{~Hz}, \mathrm{H}_{10}\right), 4.10\left(\mathrm{ddd}, 1 \mathrm{H}, J=6.8,5.6 \mathrm{~Hz}, \mathrm{H}_{3}\right)$, $3.94\left(\mathrm{dd}, 1 \mathrm{H}, J=8.2,6.4 \mathrm{~Hz}, \mathrm{H}_{8}\right), 3.84\left(\mathrm{~d}, 1 \mathrm{H}, J=5.4 \mathrm{~Hz}, \mathrm{H}_{4}\right), 3.71$ (t, $\left.1 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{H}_{8}\right), 2.74\left(\mathrm{dd}, 1 \mathrm{H}, J=13.3,5.0 \mathrm{~Hz}, \mathrm{H}_{6}\right.$), $2.56-$ $2.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{1^{\prime}}\right), 2.30\left(\mathrm{dd}, 1 \mathrm{H}, J=13.3,9.5 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right), 1.99-1.94(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{H}_{5^{\prime}}\right), 1.67-1.56\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{2^{\prime}}, \mathrm{H}_{3^{\prime}}\right.$ and both $\left.-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.25(\mathrm{~s}, 9 \mathrm{H}$,
 2968, 2936, 1812, 1718, 1458, 1282, 1166, 1067; HRMS (FAB ${ }^{+}$) calcd for $\mathrm{C}_{39} \mathrm{H}_{52} \mathrm{O}_{9} 664.3611$, found $687.3309\left(\mathrm{MNa}^{+}\right)$.

Carbonate Diols from 52. To a solution of enone $52(18.0 \mathrm{mg}$, $27.1 \mu \mathrm{~mol}$) in 2.5 mL of acetone and 0.1 mL of BuOH were added 4-methylmorpholine N-oxide ($2 \mathrm{mg}, 17 \mu \mathrm{~mol}$) and $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{NH}_{2}(2 \mathrm{mg}$, $21 \mu \mathrm{~mol})$. A 0.16 M aqueous solution of $\mathrm{OsO}_{4}(10 \mu \mathrm{~L}, 1.6 \mu \mathrm{~mol})$ was added to the mixture via micropipet. The pale yellow solution was
stirred for 18 h , after which time the reaction was quenched by the addition of $5.0 \mathrm{~mL} 10 \mathrm{wt} \%$ aqueous $\mathrm{Na}_{2} \mathrm{SO}_{3}$. The mixture was stirred vigorously for 20 min and then extracted with $4 \times 5 \mathrm{~mL}$ of $\mathrm{Et}_{2} \mathrm{O}$. The ethereal extracts were washed once with saturated aqueous $\mathrm{NaCl}(5$ mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to a milky white oil. Analysis of the ${ }^{1} \mathrm{H}$ NMR spectrum of the unpurified material showed two major products in a $2.2: 1$ ratio. Purification by chromatography on silica gel (gradient elution, 7:2 $\rightarrow 3: 1$ hexanes/ EtOAc) afforded both the desired $(6 R, 7 R)(11 \mathrm{mg})$ and the undesired $(6 S, 7 S)(5 \mathrm{mg})$ diols as colorless oils (85% combined yield).

Physical data for the $(6 R, 7 R)$ diol: TLC $R_{f}=0.41$ ($2: 1$ hexanes/ EtOAc); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.38-7.28\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$, $7.20\left(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}\right), 7.11\left(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}\right), 4.93$ (d, $1 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{H}_{10}$), $4.93\left(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.87-$ $4.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 4.60\left(\mathrm{~d}, 1 \mathrm{H}, J=10.6 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.55(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=4.8 \mathrm{~Hz}, \mathrm{H}_{7}\right), 4.43\left(\mathrm{dd}, 1 \mathrm{H}, J=5.6,1.6 \mathrm{~Hz}, \mathrm{H}_{6}\right), 4.36(\mathrm{~d}, 1 \mathrm{H}, J=$ $\left.8.0 \mathrm{~Hz}, \mathrm{H}_{10}\right), 4.20\left(\mathrm{dd}, 1 \mathrm{H}, J=8.6,6.0 \mathrm{~Hz}, \mathrm{H}_{8}\right), 4.04-3.96(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}_{3}, \mathrm{H}_{4}$) $, 3.78-3.72\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{8}\right.$ and both secondary -OH$), 2.73$ (dd, $\left.1 \mathrm{H}, J=13.4,5.1 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right), 2.59-2.47\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{1^{\prime}}\right), 2.31(\mathrm{dd}, 1 \mathrm{H}, J=$ $\left.13.4,9.4 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right), \mathrm{l} .96-1.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5^{\prime}}\right), 1.71-1.53\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{2^{\prime}}, \mathrm{H}_{3^{\prime}}\right.$ and both $-\mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.26\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\text {piv. }} \cdot \mathrm{Bu}\right), 0.90(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}$, $-\mathrm{CH}_{2} \mathrm{CH}_{3}$), $0.87\left(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H}_{13}\right), 0.83(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}$, $-\mathrm{CH}_{2} \mathrm{CH}_{3}$); IR (thin film) $v 3446$ (br), 2971, 1804, 1719, 1458, 1362, 1284, 1166, 1078, 911, 741, 700; HRMS (FAB^{+}) calcd for $\mathrm{C}_{39} \mathrm{H}_{54} \mathrm{O}_{11}$ 698.3666 , found $699.3756\left(\mathrm{MH}^{+}\right)$.

Physical data for the ($6 S, 7 S$) diol: TLC $R_{f}=0.50$ ($2: 1$ hexanes/ EtOAc); 'H NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.35-7.26\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$, $7.22\left(\mathrm{t}, 1 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}\right), 7.11\left(\mathrm{~d}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}\right), 4.93$ (d, $\left.1 \mathrm{H}, J=11.3 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.80-4.76\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{10}, \mathrm{H}_{4}\right), 4.58(\mathrm{~d}$, $\left.1 \mathrm{H}, J=11.4 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.45\left(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{H}_{7}\right), 4.39(\mathrm{~d}$, $\left.1 \mathrm{H}, J=9.2 \mathrm{~Hz}, \mathrm{H}_{10}\right), 4.28\left(\mathrm{dd}, 1 \mathrm{H}, J=12.8,6.3 \mathrm{~Hz}, \mathrm{H}_{3}\right), 4.20(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=5.0 \mathrm{~Hz}, \mathrm{H}_{4}\right), 4.19-4.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{6}, \mathrm{H}_{8}\right), 4.03(\mathrm{t}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}$, H_{8}), $3.82(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}$, secondary -OH$), 3.68(\mathrm{~d}, 1 \mathrm{H}, J=5.0$ Hz , secondary -OH), 2.67 (dd, $1 \mathrm{H}, J=13.5,6.2 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}$), 2.49 (ddd, $1 \mathrm{H}, J=13.9,8.6,5.6 \mathrm{~Hz}, \mathrm{H}_{1^{\prime}}, 2.37$ (dd, $1 \mathrm{H}, J=13.4,8.5 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}$), $1.93-1.88\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5^{\prime}}\right), 1.83-1.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{1^{\prime}}\right), 1.73-1.34(\mathrm{~m}, 8 \mathrm{H}$, $\mathrm{H}_{2^{\prime}}, \mathrm{H}_{3^{\prime}}$ and both $-\mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.22 (s, $9 \mathrm{H}, \mathrm{H}_{\mathrm{Piv}, \mathrm{Bu}^{\prime}}$), 0.94 (t, $3 \mathrm{H}, J=7.5$ $\left.\mathrm{Hz},-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.91\left(\mathrm{~d}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{H}_{13}\right), 0.89(\mathrm{t}, 3 \mathrm{H}, J=7.5 \mathrm{~Hz}$, $-\mathrm{CH}_{2} \mathrm{CH}_{3}$); IR (thin film) $v 3432$ (br), 2970, 1802, 1719, 1458, 1363, 1284, 1168, 1063, 700; $\mathrm{HRMS}^{\left(\mathrm{FAB}^{+}\right) \text {calcd for } \mathrm{C}_{39} \mathrm{H}_{54} \mathrm{O}_{11} \text { 698.3666, }}$ found $699.3745\left(\mathrm{MH}^{+}\right)$.

TBS-Protected Bicyclic Ketal 54. To a solution of 45 (1.40 g , 2.19 mmol) in 85.0 mL of acetone were added (DHQD) ${ }_{2} \operatorname{PHAL}(1.0 \mathrm{~g}$, 1.3 mmol), 4 -methylmorpholine N-oxide ($513 \mathrm{mg}, 4.38 \mathrm{mmol}$), and $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{NH}_{2}$ ($210 \mathrm{mg}, 2.2 \mathrm{mmol}$). The pale yellow solution was cooled to $0^{\circ} \mathrm{C}$ before 4.1 mL of an aqueous solution of $\mathrm{OsO}_{4}(0.66 \mathrm{mmol}$, 0.16 M) was added dropwise via pipet. Next, 5.0 mL of ${ }^{\prime} \mathrm{BuOH}$ was added to the slightly turbid mixture. The reaction was warmed to 23 ${ }^{\circ} \mathrm{C}$ and stirred for 12 h , after which time 20 mL of a buffered 1.5 M $\mathrm{NaHSO}_{3} / \mathrm{Na}_{2} \mathrm{SO}_{4}$ solution (pH 7) was poured into the reaction mixture. The resulting slurry was stirred vigorously for 2 h before being partitioned between 20 mL of saturated aqueous NaCl and 50 mL of $20 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was collected, and the aqueous phase was extracted with $4 \times 50 \mathrm{~mL}$ of $20 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extracts were combined and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent under reduced pressure yielded 1.8 g of a pale brown foam. The desired product was isolated as a 1.7:1 mixture of epimeric diols 46/47 (as shown by 'H NMR of the unpurified material) and used without further purification.

The unpurified mixture of tetraols $46 / 47(1.50 \mathrm{~g}, 2.19 \mathrm{mmol})$ was dissolved in 200 mL of MeOH and cooled to $0^{\circ} \mathrm{C}$, and then 1.0 mL of 12 N HCl was added. The solution was warmed to $23^{\circ} \mathrm{C}$ and stirred for 2 h . Quenching the reaction at $0^{\circ} \mathrm{C}$ with ${ }^{\circ} \mathrm{Pr}_{2} \mathrm{NEt}(\sim 2 \mathrm{~mL})$, followed by evaporation of the solvent under reduced pressure, gave a pale yellow viscous oil. Purification by chromatography on silica gel ($3: 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ / $\mathrm{EtOAc})$ yielded the product as a white foam $(1.1 \mathrm{~g}, 86 \%)$. The bicyclic ketal was isolated as a 1.7:1 mixture of $\mathrm{C}(6) / \mathrm{C}(7)$ anti diol diastereomers 53/56, as shown by ${ }^{1} \mathrm{H}$ NMR: TLC $R_{f}=0.49\left(1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}\right)$.

To a solution of $\mathbf{5 3 / 5 6}(684 \mathrm{mg}, 1.17 \mathrm{mmol})$ in 10.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added $\mathrm{Et}_{3} \mathrm{~N}$ ($1.6 \mathrm{~mL}, 11.7 \mathrm{mmol}, 10$ equiv), ${ }^{\prime} \mathrm{BuMe}_{2} \mathrm{SiCl}$ (369 $\mathrm{mg}, 2.45 \mathrm{mmol}, 2.1$ equiv), and 4-DMAP ($14.0 \mathrm{mg}, 0.12 \mathrm{mmol}, 10$ $\mathrm{mol} \%$) successively. The mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 46 h and
then poured onto 20 mL of a 1.0 M aqueous $\mathrm{KH}_{2} \mathrm{PO}_{4}$ solution. The two phases were separated, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to a yellow oil. Purification by chromatography on silica gel (gradient elution, 4:1 $\rightarrow 2: 1$ hexanes/ EtOAc) provided both 54 ($\mathbf{4 6 0} \mathrm{mg}, 74 \%$) and $57(270 \mathrm{mg}, 81 \%)$ as colorless oils: $\left.\operatorname{TLC}_{\mathrm{R}_{\mathrm{f}}} \mathbf{5 4}\right)=0.43, \mathrm{R}_{\mathrm{f}}(57)=0.61(2: 1$ hexanes $/ E t O A c)$.
Physical data for 54: $[\alpha]_{\mathrm{Na}}+384.7^{\circ}\left(c=0.27, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.36-7.23\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.18(\mathrm{t}, 1 \mathrm{H}, J=7.4$ $\left.\mathrm{Hz}, \mathrm{H}_{\text {arom }}\right), 7.11\left(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}\right), 4.86-4.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right)$, $4.64\left(\mathrm{~d}, 1 \mathrm{H}, J=11.3 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.59(\mathrm{~d}, 1 \mathrm{H}, J=11.3 \mathrm{~Hz}$, $\left.-\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.33\left(\mathrm{dd}, 1 \mathrm{H}, J=6.6,2.6, \mathrm{H}_{6}\right), 3.95(\mathrm{~d}, 1 \mathrm{H}, J=11.8 \mathrm{~Hz}$, $\left.\mathrm{H}_{10}\right), 3.95-3.93\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{7}\right), 3.80\left(\mathrm{~d}, 1 \mathrm{H}, J=9.5 \mathrm{~Hz}, \mathrm{H}_{4}\right), 3.80-3.77$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}_{8}\right), 3.71\left(\mathrm{~d}, 1 \mathrm{H}, J=11.8 \mathrm{~Hz}, \mathrm{H}_{10}\right), 3.66-3.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{3}\right)$, $3.29(\mathrm{~d}, 1 \mathrm{H}, J=6.6 \mathrm{~Hz}$, secondary -OH$), 2.75(\mathrm{dd}, 1 \mathrm{H}, J=13.3,5.0$ $\left.\mathrm{Hz}, \mathrm{H}_{6^{\prime}}\right), 2.29\left(\mathrm{dd}, 1 \mathrm{H}, J=13.4,9.6 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right), 2.07(\mathrm{~d}, 1 \mathrm{H}, J=5.7 \mathrm{~Hz}$, secondary -OH), $2.00-1.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5}\right), 1.78-1.45\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}_{1}, \mathrm{H}_{2}\right.$, $\left.\mathrm{H}_{3^{\prime}}\right), 1.24\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\text {Piv-Bu }}\right), 0.91\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\text {TBs }} \cdot \mathrm{Bu}\right), 0.89\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\text {TBS }}-\mathrm{Bu}^{\prime}\right)$, 0.85 (d, $3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H}_{13^{\prime}}$), 0.08 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{\text {tbs }-\mathrm{Me}}$), 0.062 (s, 6 H , $\left.\mathrm{H}_{\text {TBs }-\mathrm{Me}}\right), 0.056\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\text {TBS }-\mathrm{Me}}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 178.0$, 140.7, 138.3, 129.1, 128.4, 128.3, 128.0, 127.8, 125.9, 103.6, 86.3, $83.9,79.3,76.2,74.8,74.1,71.0,63.3,62.7,39.5,39.0,38.3,35.6$, $31.4,27.3,25.9,25.8,19.3,18.3,18.2,13.7,-4.9,-5.2,-5.32,-5.37$; IR (thin film) $v 3447$ (br), 2956, 2929, 2856, 1726, 1702, 1496, 1461, 1397, 1360, 1285, 1252, 1162, 1087, 1004, 971, 837, 777, 738, 699. Anal. Calcd for $\mathrm{C}_{45} \mathrm{H}_{74} \mathrm{Si}_{2} \mathrm{O}_{9}: \mathrm{C}, 66.30 ; \mathrm{H}, 9.15$. Found: C, 65.98 ; H, 8.84.

Pivaloate Ester 59. To a solution of diol 54 ($710 \mathrm{mg}, 0.87 \mathrm{mmol}$) in 15.0 mL of 1,2 -dichloroethane were added 4-DMAP ($635 \mathrm{mg}, 5.20$ mmol, 6.0 equiv) and ${ }^{\prime} \mathrm{BuCOCl}(320 \mu \mathrm{~L}, 2.60 \mathrm{mmol}, 3.0$ equiv). The contents were warmed to $55^{\circ} \mathrm{C}$ and stirred for 8 h . After the solution was allowed to cool to $23^{\circ} \mathrm{C}, 30 \mathrm{~mL}$ of pentane was added. The resulting white precipitate was removed by filtration through Celite. The filter cake was rinsed with pentane ($3 \times 20 \mathrm{~mL}$), and the combined filtrates were concentrated under reduced pressure to give an oily yellow residue. Purification by chromatography on silica gel ($20: 1$ hexanes/ EtOAc) provided 830 mg of $\mathbf{5 9}(97 \%)$ as a clear, colorless oil: TLC $R_{f}=0.54$ ($8: 1$ hexanes/EtOAc); $[\alpha]_{\mathrm{Na}}+78.1^{\circ}\left(c=0.27, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.35-7.26\left(\mathrm{~m}, 7 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.18(\mathrm{t}, 1 \mathrm{H}, J$ $=7.3 \mathrm{~Hz}), 7.10(\mathrm{~d}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 5.38\left(\mathrm{~d}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}, \mathrm{H}_{6}\right)$, $4.98\left(\mathrm{~d}, 1 \mathrm{H}, J=2.7 \mathrm{~Hz}, \mathrm{H}_{7}\right), 4.85-4.82\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4^{\prime}}\right), 4.82(\mathrm{~d}, 1 \mathrm{H}, J$ $\left.=11.7 \mathrm{~Hz},-\mathrm{OCH}_{2} \mathrm{Ph}\right), 4.60\left(\mathrm{~d}, 1 \mathrm{H}, J=11.7 \mathrm{~Hz},-\mathrm{OCH} H_{2} \mathrm{Ph}\right), 4.07(\mathrm{~d}$, $\left.1 \mathrm{H}, J=10.0 \mathrm{~Hz}, \mathrm{H}_{4}\right), 3.80-3.75\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{3}, \mathrm{H}_{10}\right), 3.71-3.68(\mathrm{~m}, 2 \mathrm{H}$, H_{8}), $2.75\left(\mathrm{dd}, 1 \mathrm{H}, J=13.3,4.7 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right), 2.27(\mathrm{dd}, 1 \mathrm{H}, J=13.3,9.8$ $\mathrm{Hz}, \mathrm{H}_{6^{\prime}}$), 1.99-1.94 (m, 1H, $\mathrm{H}_{5^{\prime}}$), 1.69-1.35 (m, 6H, $\mathrm{H}_{1^{\prime}}, \mathrm{H}_{2^{\prime}}, \mathrm{H}_{3^{\prime}}$),

 0.11 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{\text {tвs }- \text { ме }}$), 0.07 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{\text {tвs-ме }}$), 0.05 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{\text {tвs }-\mathrm{Me}), 0.02}$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{\text {tвs }-\mathrm{Me}}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 177.8,176.9,176.8$, $140.8,138.7,129.1,128.29,128.23,127.5,125.9,103.9,84.8,81.3$, $77.5,76.3,74.8,73.9,69.4,62.9,61.5,39.5,39.0,38.8,38.7,38.4$, $36.1,31.3,27.3,27.0,25.9,19.2,18.36,18.34,13.7,-4.9,-5.1,-5.3$, -5.5 ppm ; IR (thin film) $v 3028,2957,2930,2857,1740,1479,1460$, 1396, 1362, 1282, 1252, 1159, 1098, 1006, 837, 699. Anal. Calcd for $\mathrm{C}_{55} \mathrm{H}_{90} \mathrm{Si}_{2} \mathrm{O}_{11}: \mathrm{C}, 67.17 ; \mathrm{H}, 9.22$. Found: C, $66.80 ; \mathrm{H}, 8.81$.

Ketone 61. $\mathrm{Pd}(\mathrm{OH})_{2}$ on carbon ($20 \%, 400 \mathrm{mg}$) and palladium on calcium carbonate ($5 \%, 400 \mathrm{mg}$) were suspended in 15.0 mL of an absolute EtOH solution of $\mathbf{5 9}(830 \mathrm{mg}, 0.84 \mathrm{mmol})$. The slurry was stirred vigorously at $23^{\circ} \mathrm{C}$ under 1 atm of H_{2} for 168 h . Removal of the palladium catalysts by filtration through Celite, followed by evaporation of the filtrate under reduced pressure, afforded 730 mg (99%) of $\mathbf{6 0}$ as a colorless oil. The product $\mathbf{6 0}$ was used without further purification: TLC $R_{f}=0.38$ ($8: 1$ hexanes/EtOAc); $[\alpha]_{\mathrm{Na}}+81.4^{\circ}(c=$ $0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.27-7.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$, 7.18 (t. $1 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}$), 7.10 (d, $2 \mathrm{H}, J=7.1, \mathrm{H}_{\text {arom }}$), 5.48 (d, $\left.1 \mathrm{H}, J=2.6 \mathrm{~Hz}, \mathrm{H}_{6}\right), 5.00\left(\mathrm{~d}, 1 \mathrm{H}, J=2.6 \mathrm{~Hz}, \mathrm{H}_{7}\right), 4.86-4.83(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{H}_{4^{4}}\right), 3.99\left(\mathrm{dd}, 1 \mathrm{H}, J=9.0,1.5 \mathrm{~Hz}, \mathrm{H}_{4}\right), 3.88(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}$, H_{10}), 3.87-3.81(m, $\left.2 \mathrm{H}, \mathrm{H}_{3}, \mathrm{H}_{8}\right), 3.78-3.74\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{8}\right), 3.74(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=11.3 \mathrm{~Hz}, \mathrm{H}_{10}\right), 3.13(\mathrm{~d}, 1 \mathrm{H}, J=1.5 \mathrm{~Hz},-\mathrm{OH}), 2.75(\mathrm{dd}, 1 \mathrm{H}, J=$ $\left.13.3,4.7 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right), 2.55\left(\mathrm{dd}, 1 \mathrm{H}, J=13.3,9.8 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right.$), $1.96-1.93$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{5^{\prime}}$), $1.69-1.26\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}_{1^{\prime}}, \mathrm{H}_{2^{\prime}}, \mathrm{H}_{3^{\prime}}\right), 1.234$ ($\mathrm{s}, 9 \mathrm{H}, \mathrm{H}_{\text {piv. }} \mathrm{Bu}^{\prime}$), 1.229 (s, $\left.9 \mathrm{H}, \mathrm{H}_{\text {Piv }} \cdot \mathrm{Bu}\right), 1.21$ (s, $9 \mathrm{H}, \mathrm{H}_{\text {Piv }} \cdot \mathrm{Bu}$), 0.91 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{H}_{\text {TBs }} \cdot \mathrm{Bbu}^{\prime}$),
 $\mathrm{H}_{\text {TBs-me }}$), $0.085\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\text {TBs-me }}\right), 0.07$ ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{\text {TBS-Me }}\right){ }^{33} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, 125 MHz) $\delta 177.9,176.85,176.81,140.8,129.1,128.2,125.9,104.0$, $83.4,81.1,76.42,76.40,76.2,73.5,66.5,65.2,62.2,39.4,39.0,38.8$, $38.7,35.8,31.1,27.3,27.01,26.99,25.89,25.86,19.2,18.3,13.8,-5.4 ;$ IR (thin film) $v 3027$ (br), 2958, 2931, 2857, 1740, 1480, 1462, 1397, 1363, 1283, 1255, 1160, 1036, 1006, 939, 837, 778, 700; HRMS (FAB^{+}) calcd for $\mathrm{C}_{48} \mathrm{H}_{84} \mathrm{Si}_{2} \mathrm{O}_{11} 892.6046$, found $893.5645\left(\mathrm{MH}^{+}\right)$. Anal. Calcd for $\mathrm{C}_{48} \mathrm{H}_{84} \mathrm{Si}_{2} \mathrm{O}_{11}$: C, 64.53; H, 9.48. Found: C, 64.34; H, 9.32.

Dimethyl sulfoxide ($580 \mu \mathrm{~L}, 8.19 \mathrm{mmol}, 10.0$ equiv) was added dropwise to a solution of oxalyl chloride ($360 \mu \mathrm{~L}, 4.10 \mathrm{mmol}, 2.0$ equiv) in 10.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78^{\circ} \mathrm{C}$. Following gas evolution, the mixture was stirred for 10 min before a solution of alcohol $60(725 \mathrm{mg}, 0.81$ mmol) in 2.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise over 10 min . The resulting white suspension was stirred at $-78^{\circ} \mathrm{C}$ for an additional 1 h ; $\mathrm{Et}_{3} \mathrm{~N}(2.90 \mathrm{~mL}, 20.5 \mathrm{mmol}, 25$ equiv) was then added dropwise, which caused the solution to clear. The solution was stirred at $-78^{\circ} \mathrm{C}$ for $15-20 \mathrm{~min}$ and then warmed to $0^{\circ} \mathrm{C}$. The reaction was quenched at $0^{\circ} \mathrm{C}$ with 30 mL of a 1.0 M aqueous $\mathrm{KH}_{2} \mathrm{PO}_{4}$ solution. The organic layer was collected, and the aqueous phase was extracted with 4×25 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification of the yellow residue by chromatography on silica gel ($20: 1$ hexanes/EtOAc) gave the desired product 61 as a colorless oil ($6.0 \mathrm{~g}, 96 \%$): TLC $R_{f} \approx 0.50$ ($8: 1$ hexanes/EtOAc); $[\alpha]_{\mathrm{Na}}+42.9^{\circ}\left(c=0.42, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{C}_{6} \mathrm{D}_{6}, 500 \mathrm{MHz}\right) \delta 7.23-$ $7.11\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.08-7.04\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 5.40(\mathrm{~d}, 2 \mathrm{H}, J=1.8$ $\left.\mathrm{Hz}, \mathrm{H}_{6}, \mathrm{H}_{7}\right), 5.08-5.04\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4^{\prime}}\right), 4.61(\mathrm{dd}, 1 \mathrm{H}, J=6.4,4.1 \mathrm{~Hz}$, $\left.\mathrm{H}_{3}\right), 4.32\left(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}, \mathrm{H}_{10}\right), 4.15(\mathrm{dd}, 1 \mathrm{H}, J=10.9,6.4 \mathrm{~Hz}$, $\left.\mathrm{H}_{8}\right), 4.12\left(\mathrm{dd}, 1 \mathrm{H}, J=11.0,4.2 \mathrm{~Hz}, \mathrm{H}_{8}\right), 4.05(\mathrm{~d}, 1 \mathrm{H}, J=10.8 \mathrm{~Hz}$, $\left.\mathrm{H}_{10}\right), 2.74\left(\mathrm{dd}, 1 \mathrm{H}, J=13.4,4.8 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right), 2.22-2.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{1^{\prime}}\right.$, $\left.\mathrm{H}_{6^{\prime}}\right), 2.08-2.02\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{1^{\prime}}\right), 1.89-1.83\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5^{\prime}}\right), 1.81-1.77(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{H}_{3^{\prime}}\right), 1.68-1.64\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{3^{\prime}}\right), 1.62-1.56\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{2^{\prime}}\right), 1.39-1.29$ $\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{H}_{2^{\prime}}\right), 1.27\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\text {Piv. }{ }^{\prime} \text { 'uu }}\right), 1.16\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\mathrm{Piv},-\mathrm{Bu}}\right), 1.10(\mathrm{~s}, 9 \mathrm{H}$,
 $6.8 \mathrm{~Hz}, \mathrm{H}_{13^{\prime}}$), $0.154\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\text {твs }-\mathrm{Me}}\right.$), $0.150\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\text {tвs }}\right.$ - ме $), 0.14$ (s , $3 \mathrm{H}, \mathrm{H}_{\text {TBS }- \text { ме }}$), 0.11 (s, $3 \mathrm{H}, \mathrm{H}_{\text {TBs-me }}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 125 \mathrm{MHz}$) $\delta 202.8$, 177.6, 177.0, 176.8, 141.5, 129.8, 129.0, 126.6, 106.6, 92.0, 82.6, 81.8, $79.5,76.2,65.8,61.3,40.3,39.9,39.5,39.4,39.0,37.9,32.3,27.9$, $27.42,27.35,26.5$ (2 lines), 20.2, 19.01, 18.94, 14.4, $-4.6,-4.7,-4.9$, -5.0 ; IR (thin film) $v 2958,2931,2857,1743,1480,1462,1396,1363$, 1282, 1256, 1159, 1128, 1037, 838, 779. Anal. Calcd for $\mathrm{C}_{48} \mathrm{H}_{82}-$ $\mathrm{Si}_{2} \mathrm{O}_{11}: \mathrm{C}, 64.68 ; \mathrm{H}, 9.27$. Found: C, 64.57; H, 9.03.

Alkyne 67. tert-Butyllithium ($1.7 \mathrm{M}, 1.5 \mathrm{~mL}, 2.5 \mathrm{mmol}$) was added dropwise to a solution of (trimethylsilyl)acetylene ($360 \mu \mathrm{~L}, 2.55 \mathrm{mmol}$) in 1.0 mL of hexanes at $-78^{\circ} \mathrm{C}$. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 10 min and then warmed to $0^{\circ} \mathrm{C}$. After reaching $0^{\circ} \mathrm{C}$, the white suspension was stirred for an additional 45 min . The suspension of lithium (trimethylsilyl)acetylide ($1.7 \mathrm{~mL}, 1.7 \mathrm{mmol}$) was added to 5.0 mL of a $1: 1 \mathrm{Et}_{2} \mathrm{O} / \mathrm{Me}_{3} \mathrm{~N}$ mixture at $-78^{\circ} \mathrm{C}$. The resulting homogeneous solution was stirred for 5 min before a cold solution $\left(-78^{\circ} \mathrm{C}\right)$ of ketone $61(155 \mathrm{mg}, 0.17 \mathrm{mmol})$ in 1.5 mL of $\mathrm{Et}_{2} \mathrm{O}$ was added dropwise via cannula over a 3 min period. The transfer of 61 was made quantitative with an additional $500 \mu \mathrm{~L}$ of $\mathrm{Et}_{2} \mathrm{O}$. The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min and then allowed to slowly warm to $-20^{\circ} \mathrm{C}$ over 2 h . Upon reaching this temperature, the reaction was quenched by the addition of 5.0 mL of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The resulting frozen mixture was warmed to $23{ }^{\circ} \mathrm{C}$. The solution was extracted with $3 \times 5 \mathrm{~mL}$ of $\mathrm{Et}_{2} \mathrm{O}$; the organic extracts were combined, washed once with saturated aqueous $\mathrm{NaCl}(10 \mathrm{~mL})$, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the ethereal solvent in vacuo afforded the product as a $6.1: 1$ mixture of $C(4)$ carbinol epimers $\mathbf{6 5 / 6 6}$, as determined by 'H NMR of the unpurified material. The product was used without prior purification: TLC $R_{f}=0.52$ ($8: 1$ hexanes/EtOAc).

To a solution of (trimethylsilyl)acetylenes $\mathbf{6 5 / 6 6}$ ($172 \mathrm{mg}, 0.17$ mmol) in 8.0 mL of a 1:1:1:0.1 mixture of $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O} / \mathrm{EtOH} / 2,6$-lutidine was added solid AgNO_{3} ($295 \mathrm{mg}, 1.70 \mathrm{mmol}, 10$ equiv). The white suspension was stirred vigorously for 3.5 h , and then 5 mL of a 1.0 M aqueous $\mathrm{KH}_{2} \mathrm{PO}_{4}$ solution was added. The resulting yellow slurry was stirred for an additional 30 min . Filtration of the reaction mixture through Celite removed most of the yellow precipitate. The filtrate was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$, and the combined organic extracts were washed once with saturated aqueous $\mathrm{NaCl}(20 \mathrm{~mL})$
and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent under reduced pressure afforded a pale yellow oil. Purification by chromatography on silica gel ($20: 1$ hexanes/EtOAc) furnished 97 mg of $67(61 \%)$ as a clear, colorless oil. The product 67 was shown to be a single $\mathrm{C}(4)$ carbinol epimer by ${ }^{1} \mathrm{H}$ NMR: TLC $R_{f}=0.36$ ($10: 1$ hexanes/EtOAc); $[\alpha]_{\mathrm{Na}}+10.8^{\circ}\left(c=0.45, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.27-$ $7.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.17\left(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}\right), 7.11(\mathrm{~d}, 2 \mathrm{H}, J=$ $7.1 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}$), 5.52 (d, $1 \mathrm{H}, J=1.9 \mathrm{~Hz}$, tertiary -OH), $5.43(\mathrm{~d}, 1 \mathrm{H}, J$ $\left.=2.8 \mathrm{~Hz}, \mathrm{H}_{6}\right), 4.99\left(\mathrm{~d}, 1 \mathrm{H}, J=2.8 \mathrm{~Hz}, \mathrm{H}_{7}\right), 4.88-4.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4^{\prime}}\right)$, $4.18\left(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}, \mathrm{H}_{10}\right), 4.11\left(\mathrm{dd}, 1 \mathrm{H}, J=11.5,1.7 \mathrm{~Hz}, \mathrm{H}_{8}\right)$, 4.03 (ddd, $\left.1 \mathrm{H}, J=7.1,1.7,1.6 \mathrm{~Hz}, \mathrm{H}_{3}\right) 3.92(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz}$, H_{10}), 3.89 (dd, $1 \mathrm{H}, J=11.5,7.1 \mathrm{~Hz}, \mathrm{H}_{8}$), 2.76 (dd, $1 \mathrm{H}, J=13.3,4.7$ $\left.\mathrm{Hz}, \mathrm{H}_{6^{\prime}}\right), 2.61(\mathrm{~s}, 1 \mathrm{H},-\mathrm{C}=\mathrm{C} H), 2.26\left(\mathrm{dd}, 1 \mathrm{H}, J=13.3,9.9 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right)$, $2.00-1.96\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5^{\prime}}\right), 1.80-1.25\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}_{1^{\prime}}, \mathrm{H}_{2^{\prime}}, \mathrm{H}_{3^{\prime}}\right), 1.23(\mathrm{~s}, 9 \mathrm{H}$,
 ${ }^{\prime}$ Bu) $, 0.90\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\text {tвs }} . \mathrm{Bbu}^{\prime}\right), 0.83\left(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H}_{13}{ }^{\prime}\right), 0.120(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{H}_{\text {Tвs }-\mathrm{Me}}$), 0.116 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{\text {TBS }-\mathrm{Me}}$), 0.07 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}_{\text {Tbs }-\mathrm{Me}}$), 0.06 ($\mathrm{s}, 3 \mathrm{H}$, $\left.\mathrm{H}_{\text {tвs }-\mathrm{me}}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 177.9,177.0,176.6,140.8$, 129.1, 128.2, 125.9, 105.0, 83.7, 81.7, 80.0, 78.8, 78.3, 76.2, 76.0, 69.3, $65.1,63.5,39.4,39.0,38.8,38.7,38.5,35.8,31.1,27.3,27.02,26.95$, $26.1,25.8,19.1,18.5,18.3,13.8,-5.0,-5.2,-5.5,-5.8$; IR (thin film) $v 3434,3258,2958,2932,2858,1742,1480,1462,1397,1363$, 1282, 1255, 1159, 1033, 973, 837, 780; HRMS (FAB^{+}) calcd for $\mathrm{C}_{50} \mathrm{H}_{84^{-}}$ $\mathrm{Si}_{2} \mathrm{O}_{11} 916.5552$, found $917.5637\left(\mathrm{MH}^{+}\right)$.

Polyol 68. A 1.5 M solution of Dibal-H in toluene ($3.2 \mathrm{~mL}, 4.7$ $\mathrm{mmol}, 15$ equiv) was added to a solution of $67(290 \mathrm{mg}, 0.316 \mathrm{mmol})$ in 30.0 mL of a $1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ /toluene mixture at $-78^{\circ} \mathrm{C}$. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 30 min and then warmed over a 5 h period to ca. $-5^{\circ} \mathrm{C}$ before being quenched by the addition of 10 mL of EtOAc. A 5.0 M aqueous solution of Na / K tartrate was added (30 mL), and the biphasic mixture was stirred for 12 h . The organic phase was collected, and the aqueous layer was extracted with $3 \times 25 \mathrm{~mL}$ of EtOAc. The combined extracts were washed once with saturated aqueous $\mathrm{NaCl}(30 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification by chromatography on silica gel (gradient elution, 2:1 \rightarrow 3:2 hexanes/EtOAc) provided 176 mg of $\mathbf{6 8}(84 \%)$ as a colorless oil: TLC $R_{f}=0.20(2: 1$ hexanes/EtOAc $) ;[\alpha]_{\mathrm{Na}}+18.1^{\circ}\left(c=0.24, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.29-7.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.20-7.16$ (m, $3 \mathrm{H}, \mathrm{H}_{\text {arom }}$), $4.70(\mathrm{~d}, 1 \mathrm{H}, J=1.1 \mathrm{~Hz}$, tertiary -OH$), 4.68(\mathrm{dd}, 1 \mathrm{H}$, $\left.J=5.8,2.7 \mathrm{~Hz}, \mathrm{H}_{6}\right), 4.39\left(\mathrm{dd}, 1 \mathrm{H}, J=5.6,2.6 \mathrm{~Hz}, \mathrm{H}_{7}\right), 4.29(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=11.3 \mathrm{~Hz}, \mathrm{H}_{10}\right), 4.09-4.05\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{8}\right.$ and $\left.\mathrm{H}_{10}\right), 3.95(\mathrm{dd}, 1 \mathrm{H}, J=$ $\left.3.4,3.2 \mathrm{~Hz}, \mathrm{H}_{3}\right), 3.51\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 2.78(\mathrm{dd}, 1 \mathrm{H}, J=13.4,6.3 \mathrm{~Hz}$, $\mathrm{H}_{6^{\prime}}$), 2.74 (br s, 1 H , secondary -OH), 2.54 (d, $1 \mathrm{H}, J=0.7 \mathrm{~Hz},-\mathrm{C} \equiv \mathrm{CH}$), 2.45 (dd, $1 \mathrm{H}, J=13.3,8.6 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}$), 1.83-1.46 (m, 7H, H $1^{\prime}, \mathrm{H}_{2^{\prime}}, \mathrm{H}_{3^{\prime}}$, $\left.\mathrm{H}_{5^{\prime}}\right), 0.90\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\text {TBS }} \cdot \mathrm{Bu}^{\prime}\right), 0.89\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\text {TBS }} \cdot \mathrm{Bu}\right), 0.84(\mathrm{~d}, 1 \mathrm{H}, J=6.8$ $\left.\mathrm{Hz}, \mathrm{H}_{\mathrm{l}^{3}}\right), 0.11$ ($\mathrm{s}, 6 \mathrm{H}, \mathrm{H}_{\text {TBS }-\mathrm{Me}}$), 0.09 ($\mathrm{s}, 6 \mathrm{H}, \mathrm{H}_{\text {TBs-Me }}$); ${ }^{13} \mathrm{C}$ NMR (CDCl_{3}, 125 MHz) $\delta 141.1,129.1,128.3,125.8,105.1,85.8,84.8,81.06,80.93$, $75.98,75.72,74.1,68.5,63.7,62.5,40.4,39.9,35.5,34.5,25.9,25.7$, 19.9, 18.3, 18.1, 13.2, -5.2, -5.3, -5.5, -5.6; IR (thin film) $v 3415$ (br), 2954, 2930, 2857, 1463, 1362, 1255, 1086, 971, 837, 781, 700; HRMS (FAB^{+}) calcd for $\mathrm{C}_{35} \mathrm{H}_{60} \mathrm{Si}_{2} \mathrm{O}_{8} 664.4186$, found 665.3903 (MH^{+}).

Tris-acetate 69. To a solution of polyol 68 ($130 \mathrm{mg}, 0.195 \mathrm{mmol}$) in 5.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 4-DMAP ($490 \mathrm{mg}, 4.0 \mathrm{mmol}, 20$ equiv), followed by $\mathrm{Ac}_{2} \mathrm{O}$ ($190 \mu \mathrm{~L}, 2.0 \mathrm{mmol}, 10$ equiv). The solution was stirred for 12 h and then poured into 5 mL of a 1.0 M aqueous $\mathrm{KH}_{3}, \mathrm{PO}_{4}$ solution. The organic phase was collected, and the aqueous layer was extracted with $3 \times 5 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. Purification of the pale yellow residue by chromatography on silica gel ($6: 1$ hexanes/EtOAc) gave the product $69(145 \mathrm{mg}, 94 \%)$ as a clear, colorless oil: TLC $R_{f}=0.16\left(6: 1\right.$ hexanes/EtOAc); $[\alpha]_{\mathrm{Na}}+37.0^{\circ}{ }_{(c}$ $\left.=0.56, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{H}_{\text {arom }}\right), 7.18\left(\mathrm{t}, 1 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}\right), 7.12\left(\mathrm{~d}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}\right)$, $5.50\left(\mathrm{~d}, 1 \mathrm{H}, J=2.9 \mathrm{~Hz}, \mathrm{H}_{6}\right), 5.42(\mathrm{~d}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}$, tertiary -OH$)$, $5.06\left(\mathrm{~d}, 1 \mathrm{H}, J=2.9 \mathrm{~Hz}, \mathrm{H}_{7}\right), 4.88-4.84\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4^{\prime}}\right), 4.17(\mathrm{~d}, 1 \mathrm{H}, J$ $\left.=11.5 \mathrm{~Hz}, \mathrm{H}_{10}\right), 4.13\left(\mathrm{dd}, 1 \mathrm{H}, J=11.6,1.7 \mathrm{~Hz}, \mathrm{H}_{8}\right), 4.03(\mathrm{ddd}, 1 \mathrm{H}$, $\left.J=6.9,1.7,1.6 \mathrm{~Hz}, \mathrm{H}_{3}\right) 3.93\left(\mathrm{~d}, 1 \mathrm{H}, J=11.4 \mathrm{~Hz}, \mathrm{H}_{10}\right), 3.90(\mathrm{dd}, 1 \mathrm{H}$, $\left.J=11.7,6.9 \mathrm{~Hz}, \mathrm{H}_{8}\right), 2.76\left(\mathrm{dd}, 1 \mathrm{H}, J=13.5,5.0 \mathrm{~Hz}, \mathrm{H}_{6}\right), 2.60(\mathrm{~s}$, $1 \mathrm{H},-\mathrm{C} \equiv \mathrm{C} H), 2.28\left(\mathrm{dd}, 1 \mathrm{H}, J=13.4,9.7 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right), 2.11(\mathrm{~s}, 6 \mathrm{H}$, two $-\mathrm{COCH}_{3}$), 2.06 (s, $3 \mathrm{H},-\mathrm{COCH}_{3}$), $2.00-1.96\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5^{\prime}}\right), 1.85-1.25$
 (d, $3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H}_{1_{3}}$), 0.13 (s, $3 \mathrm{H}, \mathrm{H}_{\text {твs }-\mathrm{me}}$), 0.12 (s, $3 \mathrm{H}, \mathrm{H}_{\text {твs-me }}$),
$0.08\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}_{\text {TBS-Me }}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 170.7,169.7$, $169.3,140.6,129.0,128.1,125.8,104.8,83.5,81.5,80.29,80.27,78.4$, $78.2,76.8,76.1,69.0,64.3,63.2,39.3,38.3,35.5,31.1,25.8,25.7$, $21.1,20.65,20.61,19.0,18.2,14.0,-5.0,-5.2,-5.5,-5.8$; IR (thin film) $v 3426,3259,2955,2931,2885,1753,1472,1463,1372,1239$, $1138,1088,1041,1021,837,780 ;$ HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{41} \mathrm{H}_{66}{ }^{-}$ $\mathrm{Si}_{2} \mathrm{O}_{11} 790.4143$, found $791.4204\left(\mathrm{MH}^{+}\right)$.
$\mathbf{C}(8)$ Alcohol 70. A solution of $69(104 \mathrm{mg}, 0.131 \mathrm{mmol})$ in 20.0 mL of MeOH was treated with $95 \mu \mathrm{~L}(1.2 \mathrm{mmol}, 9$ equiv) of $\mathrm{Cl}_{2} \mathrm{CHCO}_{2} \mathrm{H}$ and stirred for 7 h . The mixture was then diluted with 20 mL of $\mathrm{Et}_{2} \mathrm{O}$ and poured into 20 mL of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The organic phase was isolated and the aqueous layer extracted with 3 $\times 20 \mathrm{~mL}$ of $\mathrm{Et}_{2} \mathrm{O}$. The combined ethereal extracts were washed with $1 \times 40 \mathrm{~mL}$ of saturated aqueous NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. Purification by chromatography on silica gel ($2: 1$ hexanes/EtOAc) furnished $80 \mathrm{mg}(90 \%)$ of the alcohol product as a clear, colorless oil: TLC $R_{f}=0.19$ ($2: 1$ hexanes/EtOAc).

To a solution of the alcohol ($79.0 \mathrm{mg}, 0.18 \mathrm{mmol}$) in 15.0 mL of pyridine was suspended 80 mg of $5 \% \mathrm{Pd}-\mathrm{C}$. The contents were placed under $1 \mathrm{~atm} \mathrm{H}_{2}$ and stirred vigorously for 2 h . The mixture was filtered through Celite, the filter cake was rinsed with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$, and the filtrate was concentrated in vacuo to a pale yellow oil. The product 70 was used without further purification: TLC $R_{f}=0.17$ (2:1 hexanes/ EtOAc); $[\alpha]_{\mathrm{Na}_{\mathrm{a}}}-165.2^{\circ}\left(c=0.26, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 7.28-7.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.18\left(\mathrm{dt}, 1 \mathrm{H}, J=7.3,1.2 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}\right)$, 7.13 (dd, $2 \mathrm{H}, J=6.9,1.2 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}$), $5.98(\mathrm{dd}, 1 \mathrm{H}, J=16.8,10.7 \mathrm{~Hz}$, $\left.-\mathrm{C} H=\mathrm{CH}_{2}\right), 5.69\left(\mathrm{dd}, 1 \mathrm{H}, J=16.8,1.7 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{2}\right), 5.44(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=3.0 \mathrm{~Hz}, \mathrm{H}_{6}\right), 5.42\left(\mathrm{dd}, 1 \mathrm{H}, J=10.7,1.7 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{2}\right), 5.10(\mathrm{~d}$, $\left.1 \mathrm{H}, J=3.0 \mathrm{~Hz}, \mathrm{H}_{7}\right), 4.90-4.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4^{4}}\right), 4.71(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, tertiary -OH), 3.88 (dd, $1 \mathrm{H}, J=5.3,3.4 \mathrm{~Hz}, \mathrm{H}_{3}$), 3.80 (dd, $1 \mathrm{H}, J=12.0,5.4$ $\left.\mathrm{Hz}, \mathrm{H}_{8}\right), 3.79\left(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}, \mathrm{H}_{10}\right), 3.71(\mathrm{~d}, 1 \mathrm{H}, J=11.0 \mathrm{~Hz}$, $\left.\mathrm{H}_{10}\right), 3.70\left(\mathrm{dd}, 1 \mathrm{H}, J=12.0,3.3 \mathrm{~Hz}, \mathrm{H}_{8}\right), 2.75(\mathrm{dd}, 1 \mathrm{H}, J=13.4,5.0$ $\left.\mathrm{Hz}, \mathrm{H}_{6^{\prime}}\right), 2.29$ (dd, $\left.1 \mathrm{H}, \mathrm{J}=13.4,9.5 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right), 2.12\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{COCH}_{3}\right)$, $2.10\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{COCH}_{3}\right), 2.07\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{COCH}_{3}\right), 2.00-1.95\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5}\right)$, $1.87-1.47\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}_{1^{\prime}}, \mathrm{H}_{2^{\prime}}, \mathrm{H}_{3^{\prime}}\right), 0.87\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\text {TBs }}{ }^{\prime} \mathrm{Bu}\right), 0.84(\mathrm{~d}, 3 \mathrm{H}, J$ $\left.=6.8 \mathrm{~Hz}, \mathrm{H}_{13^{\prime}}\right), 0.06\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\text {tвs }- \text { ме }}\right), 0.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\text {твs }- \text { ме }}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 170.9,169.9$ (2 lines), 140.7, 134.8, 129.1, 128.2, $125.9,118.9,104.5,84.2,80.5,77.4,77.0$ (masked by CDCl_{3}), 75.2 , $75.0,62.9,61.3,39.4,38.4,35.4,31.1,25.7,21.1,20.7,20.6,19.0$, 18.1, 14.0, -5.7, -5.8 ; IR (thin film) $v 3450$ (br), 3026, 2955, 2931, $1749,1463,1432,1372,1240,1179,1093,1039,967,838,781,701$; HRMS (FAB^{+}) calcd for $\mathrm{C}_{35} \mathrm{H}_{54} \mathrm{SiO}_{11} 678.3929$, found $679.3501\left(\mathrm{MH}^{+}\right)$.

C(8) tert-Butyl Ester 71. To a solution of alcohol 70 (15.0 mg , $22.1 \mu \mathrm{~mol})$ in 3.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $21 \mathrm{mg}(50 \mathrm{mmol})$ of freshly prepared Dess-Martin periodinane. ${ }^{31}$ The white suspension was stirred at $23^{\circ} \mathrm{C}$ for 2 h . $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was then added to the reaction mixture, and the resulting precipitates were removed by filtration through Celite. The filtrate was concentrated in vacuo to give a white solid residue. Purification by chromatography on silica gel (2:1 hexanes/EtOAc) afforded the product aldehyde ($14 \mathrm{mg}, 94 \%$) as a colorless oil: TLC $R_{f} \approx 0.37$ ($2: 1$ hexanes/EtOAc).

The intermediate aldehyde ($11.0 \mathrm{mg}, 16.3 \mu \mathrm{~mol}$) was dissolved in 6.0 mL of a $5: 1.2 \mathrm{BuOH} / 2$-methyl-2-butene solution and cooled to $\sim 10^{\circ} \mathrm{C}$. An ice-cold buffered 1.1 M aqueous solution of $\mathrm{NaClO}_{2}(150$ $\mu \mathrm{L}, 165 \mu \mathrm{~mol}, 10$ equiv) was added dropwise. ${ }^{58}$ The resulting pale yellow solution was stirred for 3 h and then quenched with 5.0 mL of a pH $2 \mathrm{KH}_{2} \mathrm{PO}_{4}-\mathrm{HCl}$ buffer. The solution was extracted with 6×3 mL of EtOAc. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The unpurified product was redissolved in 3.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and N, N^{\prime}-diisopropyl-O-tert-butylisourea ${ }^{59}$ ($10 \mathrm{mg}, 50$ $\mu \mathrm{mol}, 3$ equiv) was added. The solution was stirred for 22 h , during which time formation of a white precipitate was observed. The mixture was concentrated under reduced pressure to a pale yellow residue. Purification by chromatography on silica gel ($5: 1$ hexanes/EtOAc) gave $9 \mathrm{mg}(76 \%)$ of 71 as a colorless oil: TLC $R_{f}=0.24$ ($4: 1$ hexanes/ EtOAc); $[\alpha]_{\mathrm{Na}}+11.4^{\circ}\left(c=0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ $\delta 7.27-7.24\left(\mathrm{~m} .2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.16\left(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}\right), 7.12(\mathrm{~d}$, $2 \mathrm{H}, J=7.4 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}$), 6.03 (dd, $1 \mathrm{H}, J=16.7,10.8 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{2}$), $5.62\left(\mathrm{dd}, 1 \mathrm{H}, J=16.7,1.5 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{2}\right), 5.47(\mathrm{~d}, 1 \mathrm{H}, J=2.9 \mathrm{~Hz}$, H_{6}), $5.35\left(\mathrm{dd}, 1 \mathrm{H}, J=10.7,1.5 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{2}\right.$), $5.11(\mathrm{~d}, 1 \mathrm{H}, J=2.9$ $\left.\mathrm{Hz}, \mathrm{H}_{7}\right), 4.87-4.85\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4^{\prime}}\right), 4.38\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 4.34(\mathrm{~s}, 1 \mathrm{H}$, tertiary $-\mathrm{OH}), 3.77\left(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}, \mathrm{H}_{10}\right), 3.72\left(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}, \mathrm{H}_{10}\right)$,
$2.75\left(\mathrm{dd}, 1 \mathrm{H}, J=13.4,4.9 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right), 2.29(\mathrm{dd}, 1 \mathrm{H}, J=13.4,9.6 \mathrm{~Hz}$, $\left.\mathrm{H}_{6}{ }^{\prime}\right), 2.12\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{COCH}_{3}\right), 2.10\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{COCH}_{3}\right), 2.06(\mathrm{~s}, 3 \mathrm{H}$, $\left.-\mathrm{COCH}_{3}\right), 2.03-1.93\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5^{\prime}}\right), 1.91-1.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{1^{\prime}}\right), 1.68-$ $1.48\left(\mathrm{~m}, 4 \mathrm{H}^{\prime} \mathrm{H}_{2^{\prime}}, \mathrm{H}_{3^{\prime}}\right), 1.43\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{(\mathrm{Bu}}\right), 0.86\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\text {TBs }}{ }^{\prime} \mathrm{Bu}\right), 0.83$ (d, $3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H}_{13^{\prime}}$), 0.032 (s, $3 \mathrm{H}, \mathrm{H}_{\text {TBs-me }}$), 0.027 ($\mathrm{s}, 3 \mathrm{H}$, $\left.\mathrm{H}_{\text {TBS-Me }}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 170.8,169.88,169.73,165.7$, $140.7,134.3,129.1,128.2,125.8,117.8,104.1,85.1,82.5,80.4,77.1$, $76.9,75.5,73.9,62.2,39.3,38.2,35.2,31.1,28.2,25.7,21.1,20.8$, $20.7,19.0,18.1,13.9,-5.6,-5.7$; IR (thin film) $v 3452,2956,2931$, $1753,1643,1603,1495,1462,1416,1370,1240,1153,1099,1041$, $930,838,701$; HRMS $\left(\mathrm{FAB}^{+}\right.$) calcd for $\mathrm{C}_{39} \mathrm{H}_{60} \mathrm{SiO}_{12} 748.4392$, found $749.3943\left(\mathrm{MH}^{+}\right)$.

3,5-Bis-tert-butyl Ester 73. To a solution of alcohol $72(38.0 \mathrm{mg}$, $60.0 \mu \mathrm{~mol}$) in 5.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added $25 \mu \mathrm{~L}(310 \mu \mathrm{~mol}$, 5 equiv) of pyridine and 51 mg ($120 \mu \mathrm{~mol}$, 2 equiv) of Dess-Martin periodinane sequentially. 3^{31} The white suspension was stirred for 35 min at $23^{\circ} \mathrm{C}$. The reaction mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$, and the resulting precipitates were removed by filtration through Celite. Evaporation of the filtrate under reduced pressure gave the product as a pale yellow oil. Purification by chromatography on silica gel (gradient elution, $7: 2 \rightarrow 2: 1$ hexanes/EtOAc) yielded the desired aldehyde as a colorless oil ($32 \mathrm{mg}, 84 \%$): TLC $R_{f}=0.43$ ($2: 1$ hexanes/EtOAc).

Oxidation and tert-butyl esterification was accomplished according to a procedure outlined for the preparation of compound 71. The 3,5-bis-tert-butyl ester 73 was isolated as a colorless oil ($27 \mathrm{mg}, 76 \%$): TLC $R_{f}=0.45(2: 1$ hexanes $/ E t O A c) ;[\alpha]_{\mathrm{Na}}+56.5^{\circ}\left(c=0.26, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.27-7.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.16(\mathrm{t}, 1 \mathrm{H}$, $\left.J=7.3 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}\right), 7.12\left(\mathrm{~d}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}\right), 5.96(\mathrm{dd}, 1 \mathrm{H}, J=$ $\left.16.7,10.9 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{2}\right), 5.60\left(\mathrm{~d}, 1 \mathrm{H}, J=2.6 \mathrm{~Hz}, \mathrm{H}_{6}\right), 5.55(\mathrm{dd}, 1 \mathrm{H}$, $\left.J=16.7,1.5 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{2}\right), 5.36(\mathrm{dd}, 1 \mathrm{H}, J=10.9,1.5 \mathrm{~Hz}$, $\left.-\mathrm{CH}=\mathrm{CH}_{2}\right), 5.12\left(\mathrm{~d}, 1 \mathrm{H}, J=2.6 \mathrm{~Hz}, \mathrm{H}_{7}\right), 4.88-4.87\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4^{\prime}}\right)$, $4.42\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 3.61$ (br s, 1H, tertiary -OH$), 3.77(\mathrm{~d}, 1 \mathrm{H}, J=11.2$ $\left.\mathrm{Hz}, \mathrm{H}_{10}\right), 3.72\left(\mathrm{~d}, 1 \mathrm{H}, J=11.2 \mathrm{~Hz}, \mathrm{H}_{10}\right), 2.75(\mathrm{dd}, 1 \mathrm{H}, J=13.3,4.9$ $\mathrm{Hz}, \mathrm{H}_{6^{\prime}}$), $2.29\left(\mathrm{dd}, 1 \mathrm{H}, J=13.3,9.6 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right), 2.14\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{COCH}_{3}\right)$, $2.09\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{COCH}_{3}\right), 2.06\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{COCH}_{3}\right), 2.03-1.94\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5^{\prime}}\right)$, $1.94-1.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{1^{\prime}}\right), 1.73-1.47\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{2^{\prime}}, \mathrm{H}_{3^{\prime}}\right), 1.43\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\mathrm{Bu}^{\prime}}\right)$, $\left.1.40\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}^{\prime} \mathrm{Bu}\right), 0.83\left(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H}_{13}\right)^{\prime}\right){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}) \delta 170.8,169.4,169.0,165.0,162.9,140.7,132.7,129.1$, $128.2,125.8,117.8,104.1,89.8,83.5,83.0,80.3,76.0,75.4,73.0(2$ lines), $39.3,38.4,35.4,31.0,28.1,28.0,21.1,20.7$ (2 lines), 19.0, 14.0; IR (thin film) $v 3567,2978,2933,1752,1603,1495,1455,1415,1369$, 1298, 1240, 1155, 1035, 937, 846, 702; HRMS (FAB^{+}) calcd for $\mathrm{C}_{37} \mathrm{H}_{52} \mathrm{O}_{13} 704.3991$, found $705.3482\left(\mathrm{MH}^{+}\right)$.

Olefin 78. Palladium on carbon ($5 \%, 112 \mathrm{mg}, 100 \mathrm{wt} \%$) was suspended in 5.0 mL of a pyridine solution of $69(112 \mathrm{mg}, 0.142 \mathrm{mmol})$. The slurry was stirred at $23{ }^{\circ} \mathrm{C}$ under 1 atm of H_{2} for 4.5 h . Removal of the palladium catalyst by filtration through Celite, followed by evaporation of the filtrate under reduced pressure, afforded 115 mg of a colorless oil. The product 77 was used without purification: TLC $R_{f}=0.26$ (6:1 hexanes/EtOAc).

Compound $77(0.142 \mathrm{mmol})$ was transferred to a Teflon vial and dissolved in a solution of HF-pyridine in THF/pyridine prepared according to the method of Trost..60 The solution was stirred at $23^{\circ} \mathrm{C}$ for 7.5 h before the reaction was quenched by the addition of 5.0 mL of an 1.0 M aqueous $\mathrm{KH}_{2} \mathrm{PO}_{4}$ solution. The mixture was extracted with $4 \times 5 \mathrm{~mL}^{\text {of }} \mathrm{Et}_{2} \mathrm{O}$, and the combined organic extracts were washed once with saturated aqueous $\mathrm{NaCl}(5 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo to give the product as a yellow oil. Purification by chromatography on silica gel ($2: 3$ hexanes/EtOAc) furnished 51 mg of olefin 78 (64%) as a white foam. TLC $R_{f}=0.13$ ($1: 1$ hexanes/ EtOAc $) ;[\alpha]_{\mathrm{Na}}+33.3^{\circ}\left(c=0.86, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ $\delta 7.29-7.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.19\left(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}\right), 7.12$ (d, $2 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}$), 5.97 (dd, $1 \mathrm{H}, J=16.7,10.9 \mathrm{~Hz}, \mathrm{H}_{9}$), 5.79 (dd, $\left.1 \mathrm{H}, J=16.9,0.9 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{2}\right), 5.51-5.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{6}\right.$ and $\left.-\mathrm{CH}=\mathrm{CH}_{2}\right), 5.17\left(\mathrm{~d}, 1 \mathrm{H}, J=3.0 \mathrm{~Hz}, \mathrm{H}_{7}\right), 4.91-4.88\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4^{\prime}}\right)$, $3.98\left(\mathrm{dd}, 1 \mathrm{H}, J=4.4,4.1 \mathrm{~Hz}, \mathrm{H}_{3}\right), 3.91(\mathrm{~s}, 1 \mathrm{H}$, tertiary -OH$), 3.80-$ $3.71\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{8}, \mathrm{H}_{10}\right), 2.74\left(\mathrm{dd}, 1 \mathrm{H}, J=13.5,5.0 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right), 2.33$ (dd, $\left.1 \mathrm{H}, J=13.5,9.4 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right), 2.30-2.26(\mathrm{~m}, 1 \mathrm{H}$, primary -OH$), 2.23$ (dd, $1 \mathrm{H}, J=6.4,2.8 \mathrm{~Hz}$, primary -OH), $2.14\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{COCH}_{3}\right), 2.13$ $\left(\mathrm{s}, 3 \mathrm{H},-\mathrm{COCH}_{3}\right), 2.09\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{COCH}_{3}\right), 2.01-1.97\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5^{\prime}}\right), 1.90-$ $1.43\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}_{1^{\prime}}, \mathrm{H}_{2^{\prime}}, \mathrm{H}_{3^{\prime}}\right), 0.86\left(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{H}_{13^{\prime}}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 171.1,170.0,169.7,140.5,133.3,129.0,128.2$,
125.9, 119.6, 104.7. 85.3, 80.1, 76.9, 76.6, 75.2, 74.5, 61.3, 60.9, 39.4 38.4, 35.1, 31.0, 21.1, 20.7, 20.6, 18.9, 13.9; IR (thin film) $v 3400$ (br), 2936, 1748, 1454, 1373, 1240, 1021, 962, 746, 702; HRMS (FAB^{+}) calcd for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{11} 564.2570$, found $565.2634\left(\mathrm{MH}^{+}\right)$.

Dlaldehyde 79. To a solution of $78(40.0 \mathrm{mg}, 70.8 \mu \mathrm{~mol})$ in 4.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $72 \mu \mathrm{~L}$ of pyridine ($0.9 \mathrm{mmol}, 12.5$ equiv), followed by 150 mg ($0.35 \mathrm{mmol}, 5$ equiv) of the Dess-Martin periodinane. ${ }^{31}$ The resulting white suspension was stirred at $23^{\circ} \mathrm{C}$ for 2.5 h . To the reaction mixture was then added 5.0 mL of $\mathrm{Et}_{2} \mathrm{O}$, and the resulting precipitates were removed by filtration through Celite. The filtrate was concentrated in vacuo, and the isolated pale yellow residue was purified by chromatography on silica gel ($3: 2$ hexanes/ EtOAc) to afford 37 mg of $79(93 \%)$ as a white foam: $\operatorname{TLC} R_{f}=0.16$ (2:1 hexanes/EtOAc); $[\alpha]_{\mathrm{Na}}+33.1^{\circ}\left(c=0.39, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$) $\delta 9.47$ (s, 1H, - CHO), $9.36(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CHO}), 7.30-$ $7.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.19\left(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}\right), 7.14(\mathrm{~d}, 2 \mathrm{H}, J=$ $7.1 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}$), 6.20 (ddd, $1 \mathrm{H}, J=16.7,11.5,1.6 \mathrm{~Hz}, \mathrm{H}_{9}$), 5.73 (d, 1 H , $\left.J=16.7 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{2}\right), 5.65\left(\mathrm{~d}, 1 \mathrm{H}, J=11.5 \mathrm{~Hz},-\mathrm{CH}=\mathrm{CH}_{2}\right), 5.56$ (d, $\left.1 \mathrm{H}, J=2.6 \mathrm{~Hz}, \mathrm{H}_{6}\right), 5.24\left(\mathrm{~d}, 1 \mathrm{H}, J=2.6 \mathrm{~Hz}, \mathrm{H}_{7}\right), 4.91-4.89(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{H}_{4^{\prime}}\right), 4.40\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 3.62(\mathrm{~d}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}$, tertiary -OH$), 2.75$ (dd, $1 \mathrm{H}, J=13.5,5.2 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}$), 2.33 (dd, $1 \mathrm{H}, J=13.4,9.3 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}$), 2.15 (s, 3H, $-\mathrm{COCH}_{3}$), $2.09\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{COCH}_{3}\right), 2.07\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{COCH}_{3}\right)$, $2.01-1.97\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{5^{\prime}}\right), 1.90-1.52\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}_{1^{\prime}}, \mathrm{H}_{2^{\prime}}, \mathrm{H}_{3^{\prime}}\right), 0.86(\mathrm{~d}, 3 \mathrm{H}$, $\left.J=6.8 \mathrm{~Hz}, \mathrm{H}_{13}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 195.3,192.7,170.9$, $169.7,169.2,140.5,129.3,129.0,128.3,125.9,122.0,105.1,90.1$, 79.5, 79.2, 76.4, 76.1, 73.2, 39.4, 38.5, 35.1, 31.0, 21.1, 20.6, 20.4, 18.9, 14.0; IR (thin film) $v 3459,2966,1743,1420,1373,1237,1036$, $959,740,702$; HRMS $\left(\mathrm{FAB}^{+}\right)$calcd for $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{O}_{11} 560.2257$, found $561.2356\left(\mathrm{MH}^{+}\right)$.

Tris-tert-butyl Ester 75. A solution of dialdehyde 79 (23.0 mg , $41.0 \mu \mathrm{~mol}$) in 6.0 mL of a $10 \% \mathrm{v} / \mathrm{v} \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution was cooled to $-78^{\circ} \mathrm{C}$ and treated with a dilute stream of ozone in oxygen (0.8 $\mathrm{mmol} / \mathrm{min}$). After $30 \mathrm{~min}, \mathrm{PPh}_{3}(13 \mathrm{mg}, 49 \mu \mathrm{~mol}, 1.2$ equiv $)$ was added to the reaction mixture, and the resulting suspension was slowly warmed to $23^{\circ} \mathrm{C}$. Concentration of the reaction mixture under reduced pressure yielded a white foam 80 . The product was dissolved in 6.0 mL of a 5:1.2 ${ }^{\prime} \mathrm{BuOH} / 2-$ methyl-2-butene solution and cooled to $\sim 10^{\circ} \mathrm{C}$. An ice-cold buffered 1.1 M aqueous solution of $\mathrm{NaClO}_{2}(370 \mu \mathrm{~L}, \sim 410$ $\mu \mathrm{mol}, 10$ equiv) was added dropwise. ${ }^{58}$ The resulting pale yellow solution was stirred for 3 h before being quenched with 5.0 mL of a $\mathrm{pH} 2 \mathrm{KH}_{2} \mathrm{PO}_{4}-\mathrm{HCl}$ buffer. The solution was extracted with 6×5 mL of EtOAc. The combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The unpurified product was redissolved in 3.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and N, N^{\prime}-diisopropyl-O-tert-butylisourea ${ }^{59}(82 \mathrm{mg}, 410$ $\mu \mathrm{mol}$) was added dropwise. The solution was stirred for 24 h , during which time formation of a white precipitate was observed. The mixture was filtered through Celite to remove the solid material and concentrated under reduced pressure to a pale yellow oil. Purification by chromatography on silica gel ($7: 2$ hexanes/EtOAc) afforded 75 ($23 \mathrm{mg}, 72 \%$) as a colorless oil: TLC $R_{f}=0.44$ ($2: 1$ hexanes/EtOAc); $[\alpha]_{\mathrm{N}_{\mathrm{a}}}+69.9^{\circ}$ $\left(c=0.29, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.27-7.25(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}_{\text {arom }}$), $7.16\left(\mathrm{t}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}\right.$), 7.11 (d, $2 \mathrm{H}, J=7.4 \mathrm{~Hz}$, $\mathrm{H}_{\text {arom }}$), 6.33 (d, $1 \mathrm{H}, J=1.9 \mathrm{~Hz}, \mathrm{H}_{6}$), $5.08\left(\mathrm{~d}, 1 \mathrm{H}, J=1.9 \mathrm{~Hz}, \mathrm{H}_{7}\right)$, $4.88\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 4.88-4.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4^{\prime}}\right), 4.06(\mathrm{~s}, 1 \mathrm{H}$, tertiary -OH$)$, 2.75 (dd, $1 \mathrm{H}, J=13.4,4.9 \mathrm{~Hz}, \mathrm{H}_{6}$), 2.29 (dd, $1 \mathrm{H}, J=13.4,9.6 \mathrm{~Hz}$, $\mathrm{H}_{6^{\prime}}$), 2.14 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{COCH}_{3}$), 2.06 ($\mathrm{s}, 3 \mathrm{H},-\mathrm{COCH}_{3}$), 2.05 ($\mathrm{s}, 3 \mathrm{H}$, $\left.-\mathrm{COCH}_{3}\right), 2.05-1.91\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{1^{\prime}}, \mathrm{H}_{5^{\prime}}\right), 1.67-1.50\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{2^{\prime}}, \mathrm{H}_{3^{\prime}}\right)$, $1.61\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\mathrm{Bu}}\right), 1.46\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\mathrm{su}}\right), 1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\mathrm{Bu}}\right), 0.83(\mathrm{~d}, 3 \mathrm{H}, J$ $\left.=6.8 \mathrm{~Hz}, \mathrm{H}_{1^{\prime}}\right)$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right) \delta 173.0,171.2,170.3$, $168.9,167.5,165.7,142.1,130.3,129.4,127.1,105.7,91.3,86.6,85.5$, 85.1, 81.8 (2 lines), 78.1, 77.0, 75.7, 40.7, 39.8, 36.7, 32.5, 28.6 (2 lines), 28.5, 21.2, 20.8, 20.6, 20.3, 14.4; IR (thin film) $v 3447,2979$, 2935, 1760, 1732, 1477, 1457, 1394, 1370, 1236, 1152, 1118, 1039, 995,$702 ;$ HRMS (FAB^{+}) calcd for $\mathrm{C}_{40} \mathrm{H}_{58} \mathrm{O}_{15} 778.3775$, found 801.3673 $\left(\mathrm{MNa}^{+}\right)$.
Alcohol 81. Tris-tert-butyl ester $\mathbf{7 5}(15.0 \mathrm{mg}, 19.3 \mu \mathrm{~mol})$ was treated with 3.0 mL of a $0.2 \% \mathrm{~K}_{2} \mathrm{CO}_{3}$ in methanol solution. The solution was stirred for 30 min before the reaction was quenched by the addition of 3.0 mL of a 0.3 M aqueous $\mathrm{KH}_{2} \mathrm{PO}_{4}$ solution. The mixture was extracted with $5 \times 3 \mathrm{~mL}$ of $\mathrm{Et}_{2} \mathrm{O}$; the combined organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give the product as a colorless oil. Purification by chromatography on silica
gel ($3: 2$ hexanes/EtOAc) furnished $12 \mathrm{mg}(90 \%)$ of $\mathbf{8 1}$ as a colorless film: TLC $R_{f}=0.28\left(1: 1\right.$ hexanes/EtOAc); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 500$ $\mathrm{MHz}) \delta 7.26-7.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.16-7.13\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 4.97(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{H}_{3}\right), 4.95\left(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{H}_{6}\right), 4.90-4.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 3.99$ (d, $1 \mathrm{H}, J=1.9 \mathrm{~Hz}, \mathrm{H}_{7}$), $2.74\left(\mathrm{dd}, 1 \mathrm{H}, J=13.4,5.6 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right), 2.35(\mathrm{dd}$, $\left.1 \mathrm{H}, J=13.4,9.1 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right), 2.05\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{COCH}_{3}\right), 2.05-2.01(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{s}^{\prime}}\right), 1.90-1.79\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\prime^{\prime}}\right), 1.73-1.62\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{3^{\prime}}\right), 1.60-1.28(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{H}_{2^{\prime}}\right), 1.60\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\mathrm{Bu}^{\prime}}\right), 1.46\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\mathrm{Bu}}\right), 1.45\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\mathrm{Bu}}\right), 0.87$ (d, $3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H}_{13}$) ; ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}$) δ 173.0, $169.8,168.2,167.4,142.0,130.2,129.3,126.9,106.4,93.2,85.5,84.3$ (2 lines), $84.2,79.9,78.3,76.8,76.0,40.6,39.5,36.6,32.5,28.7,28.5$ (2 lines), 21.1, 20.2, 14.3; IR (thin film) $v 3500$ (br), 2978, 2933, 1732, 1455, 1394, 1370, 1255, 1153, 1050, 963, 844, 701; HRMS (FAB ${ }^{+}$) calcd for $\mathrm{C}_{36} \mathrm{H}_{54} \mathrm{O}_{13} 694.3564$, found $717.3462\left(\mathrm{MNa}^{+}\right)$.

Allylic Alcohol 84. To a suspension of $\mathrm{LiAlH}_{4}(3.6 \mathrm{~g}, 95 \mathrm{mmol}$, 2.5 equiv) in 200 mL of $\mathrm{Et}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$ was added, via addition funnel, 150 mL of an ethereal solution of 5 -phenylhex- 2 -yn-1-ol $(6.6 \mathrm{~g}, 38$ $\mathrm{mmol})$. The gray suspension was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min . The mixture was warmed to $23^{\circ} \mathrm{C}$ and then heated to reflux. After 12 h at reflux, the reaction was recooled to $0^{\circ} \mathrm{C}$ and cautiously quenched with 3.6 mL of $\mathrm{H}_{2} \mathrm{O}, 3.6 \mathrm{~mL}$ of 15% aqueous NaOH , and 10.8 mL of $\mathrm{H}_{2} \mathrm{O}$, added sequentially. The resulting viscous suspension was warmed to $23^{\circ} \mathrm{C}$ and stirred vigorously for 30 min . The white precipitates were removed by filtration through Celite, and the filter cake was rinsed with $3 \times 150 \mathrm{~mL}$ of $\mathrm{Et}_{2} \mathrm{O}$. The colorless filtrate was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give a pale yellow oil. Purification by chromatography on silica gel (11:2 hexanes/EtOAc) yielded $5.3 \mathrm{~g}(79 \%)$ of 84 as a clear, colorless oil: $\operatorname{TLC} R_{f}=0.19$ (4:1 hexanes/EtOAc); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}_{\text {arom }}$), $7.20-7.18\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 5.75-5.63\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CH}=\mathrm{CHCH}_{2}-\right.$ OH), $4.09\left(\mathrm{~d}, 2 \mathrm{H}, J=5.6 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{OH}\right), 2.64(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}$, $\mathrm{PhCH}_{2} \mathrm{CH}_{2}$-), $2.10\left(\mathrm{dt}, 2 \mathrm{H}, \mathrm{J}=7.1,6.8 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2} \mathrm{OH}\right.$), 1.74 (tt, $2 \mathrm{H}, J=7.6 \mathrm{~Hz}, \mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$) , 1.38 (br s, 1 H , primary -OH); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 142.3,132.8,129.4,128.4,128.3$, 125.7, 63.7, 35.3, 31.7, 30.7; IR (thin film) v 3318 (br), 3025, 2928, 1603, 1496, 1452, 1085, 968, 697. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}: \mathrm{C}, 81.77$; H, 9.15. Found: C, 81.50; H, 9.18 .

Epoxy Alcohol 85. A flask containing 1.0 g of freshly activated 4 \AA molecular sieves was charged with 140 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $268 \mu \mathrm{~L}$ of $\mathrm{L}-(+)$-diisopropyl tartrate ($1.28 \mathrm{mmol}, 0.075$ equiv). The mixture was cooled to $-30^{\circ} \mathrm{C}$ ($2: 3$ ethylene glycol/ $/ \mathrm{H}_{2} \mathrm{O}-$ dry ice) before $\mathrm{Ti}(\mathrm{OPr})_{4}\left(250 \mu \mathrm{~L}, 0.85 \mathrm{mmol}, 0.05\right.$ equiv) and a $4.0 \mathrm{M} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of ' BuOOH ($8.5 \mathrm{~mL}, 34 \mathrm{mmol}, 2$ equiv) were added sequentially. The contents were stirred at $-30^{\circ} \mathrm{C}$ for 1 h before a solution of alcohol 84 ($3.00 \mathrm{~g}, 17.0 \mathrm{mmol}$) in 4.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added dropwise via cannula. Transfer of $\mathbf{8 4}$ was made quantitative with an additional 2.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The reaction was stirred at $-30^{\circ} \mathrm{C}$ for 20 h , after which time 1.0 mL of a 30% aqueous NaOH solution saturated with NaCl was added, along with 30.0 mL of $\mathrm{Et}_{2} \mathrm{O}$. The mixture was warmed to $-10^{\circ} \mathrm{C}$ and stirred for 1 h . Following the addition of 2.5 g of Celite and 1.0 g of MgSO_{4}, the slurry was warmed to $23^{\circ} \mathrm{C}$, and the mixture was filtered through Celite. The solids collected were rinsed with $\mathrm{Et}_{2} \mathrm{O}(\sim 50 \mathrm{~mL})$, and the combined filtrates were concentrated under reduced pressure to give a yellow oil. Purification by chromatography on silica gel (gradient elution, $3: 1 \rightarrow 2: 1$ hexanes/EtOAc) furnished 85 as a colorless oil ($3.2 \mathrm{~g}, 98 \%$): TLC $R_{f}=0.20$ ($2: 1$ hexanes/EtOAc); $[\alpha]_{\mathrm{N}_{\mathrm{a}}}+18.9^{\circ}\left(c=0.42, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 7.30-7.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.21-7.18\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 3.89$ (ddd, $1 \mathrm{H}, J=12.5,5.1,2.5 \mathrm{~Hz},-\mathrm{OCHCH}{ }_{2} \mathrm{OH}$), 3.61 (ddd, $1 \mathrm{H}, J=$ $\left.12.5,7.1,4.8 \mathrm{~Hz}, \mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{HCO}-\right), 3.00-2.96\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}_{2} \mathrm{OH}\right)$, 2.92-2.90 (m, 1H, $\left.-\mathrm{CH}_{2} \mathrm{OH}\right), 2.68\left(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{PhCH}_{2} \mathrm{CH}_{2}-\right)$, 1.90 (br s, 1 H , primary - OH), $1.85-1.73$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$ CH), $1.68-1.57$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{PhCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$-); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125$ MHz) $\delta 141.8,128.35,128.33,125.9,61.6,58.3,55.7,35.5,31.0,27.6 ;$ IR (thin film) $v 3408$ (br), 2933, 1602, 1496, 1452, 1092, 1030, 886, 747, 699. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{2}$: C, 74.97; H, 8.39. Found: C, $74.61 ; \mathrm{H}, 8.40$. The epoxy alcohol 85 was shown to be in $>95 \%$ ee as determined by analysis of the ${ }^{1} \mathrm{H}$ NMR spectrum of the corresponding Mosher (S)-MTPA ester (prepared as described in ref 65).

C(7)-OBoc Compound 97. To a cold solution ($0^{\circ} \mathrm{C}$) of $\mathbf{8 1}$ (8.5 $\mathrm{mg}, 12 \mu \mathrm{~mol}$) and 4-pyrrolidinopyridine ($1.5 \mathrm{mg}, 10.1 \mu \mathrm{~mol}, 0.8$ equiv) in 1.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $\mathrm{Et}_{3} \mathrm{~N}(7 \mu \mathrm{~L}, 49 \mu \mathrm{~mol}, 4.0$
equiv), followed by $140 \mu \mathrm{~L}$ of a $0.10 \mathrm{M} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of di-tertbutyl dicarbonate ($14.0 \mu \mathrm{~mol}, 1.15$ equiv). The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 6 h . The reaction was then poured into 2.0 mL of 1.0 M aqueous $\mathrm{K}_{2} \mathrm{HPO}_{4}$ and extracted with $5 \times 2 \mathrm{~mL}$ of $\mathrm{Et}_{2} \mathrm{O}$. The combined ethereal extracts were washed once with saturated aqueous $\mathrm{NaCl}(5 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. Purification of the white residue by chromatography on silica gel ($3: 1$ hexanes/ EtOAc) afforded 97 ($8 \mathrm{mg}, 82 \%$) as a white foam: TLC $R_{f}=0.19$ (3:1 hexanes/EtOAc); $[\alpha]_{\mathrm{Na}}+43.3^{\circ}\left(c=0.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.27-7.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.17(\mathrm{t}, 1 \mathrm{H}, J=7.3$ $\mathrm{Hz}, \mathrm{H}_{\text {arom }}$), 7.12 (d, $2 \mathrm{H}, J=7.1 \mathrm{~Hz}, \mathrm{H}_{\text {arom }}$), $5.11\left(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{6}\right), 4.88-$ $4.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{4^{\prime}}\right), 4.72\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 4.64\left(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}, \mathrm{H}_{7}\right), 3.93$ (br s, 1H, tertiary -OH), 2.80 (br s, 1 H , secondary -OH), 2.75 (dd, 1 H , $\left.J=13.5,5.1 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right), 2.30\left(\mathrm{dd}, 1 \mathrm{H}, J=13.5,9.7 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right), 2.05(\mathrm{~s}$, $\left.3 \mathrm{H},-\mathrm{COCH}_{3}\right), 2.05-1.91\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{1^{\prime}}, \mathrm{H}_{5^{\prime}}\right), 1.68-1.26\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{2^{\prime}}\right.$,
 (s, $\left.9 \mathrm{H}, \mathrm{H}^{\mathrm{Bu}}\right), 0.84\left(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H}_{13^{\prime}}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 170.8,168.5,165.8,165.2,153.7,140.8,129.1,128.2,125.8$, $103.9,90.7,85.6,85.0,83.9,83.7,83.2,76.92,76.85,75.3,74.1,39.4$, $38.0,35.6,30.9,28.2,28.1,28.0,27.7,21.2,18.9,13.8$; IR (thin film) $v 3462$ (br), 2980, 2934, 1732, 1456, 1395, 1370, 1278, 1256, 1157, $1119,1060,964,843,733$; HRMS (FAB^{+}) calcd for $\mathrm{C}_{41} \mathrm{H}_{62} \mathrm{O}_{15}$ 794.4088 , found $817.3986\left(\mathrm{MNa}^{+}\right)$.

C(7)-OBoc Zaragozic Acid C, 3,4,5-Tris-tert-butyl Ester (98). To a solution of acyl side chain acid $89(9.0 \mathrm{mg}, 36 \mu \mathrm{~mol})$ in $365 \mu \mathrm{~L}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 7.5 mg of 1,3 -dicyclohexylcarbodiimide ($36 \mu \mathrm{~mol}$). The resulting suspension was stirred for 15 min before use. A solution of $97(4.0 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$ and 4-DMAP ($2 \mathrm{mg}, 16 \mu \mathrm{~mol}$) in 1.0 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was treated with $60 \mu \mathrm{~L}$ of the $89-\mathrm{DCC}$ mixture ($6 \mu \mathrm{~mol}$). The mixture was stirred for 40 h and then quenched with 2.0 mL of 50% saturated aqueous NaHCO_{3}. The mixture was extracted with 4 $\times 2 \mathrm{~mL}$ of $\mathrm{Et}_{2} \mathrm{O}$; the organic extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to give a pale yellow oil. Purification by chromatography on silica gel (5:1 hexanes/EtOAc) gave the product $98(4 \mathrm{mg}, 78 \%)$ as a colorless film. TLC $R_{f}=0.37$ (3:1 hexanes/EtOAc $) ;[\alpha]_{\mathrm{Na}}+8.5^{\circ}\left(c=0.27, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 7.28-7.22\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.18-7.12\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 6.40$ (d, $1 \mathrm{H}, J=1.9 \mathrm{~Hz}, \mathrm{H}_{6}$), $5.38-5.29\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{4^{\prime \prime}}, \mathrm{H}_{5^{\prime \prime}}\right), 4.91(\mathrm{~s}, 1 \mathrm{H}$, $\left.\mathrm{H}_{3}\right), 4.89-4.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{7}, \mathrm{H}_{4^{\prime}}\right), 4.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}$, tertiary -OH$), 2.76$ (dd, $1 \mathrm{H}, J=13.4,4.7 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}$), 2. $57\left(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}, \mathrm{H}_{9}{ }^{\prime \prime}\right), 2.39-$ $2.27\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{6^{\prime}}, \mathrm{H}_{2^{\prime \prime}}\right), 2.12-1.84\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}_{1^{\prime}}, \mathrm{H}_{5^{\prime}}, \mathrm{H}_{3^{\prime \prime}}, \mathrm{H}_{6^{\prime \prime}}\right), 2.05(\mathrm{~s}$, $3 \mathrm{H},-\mathrm{COCH}_{3}$), $1.68-1.26\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}_{2^{\prime}}, \mathrm{H}_{3^{\prime}}, \mathrm{H}_{7^{\prime \prime}}, \mathrm{H}_{8^{\prime \prime}}\right), 1.62\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}_{\mathrm{Boc}}\right.$ $\left.{ }^{\prime} \mathrm{Bu}\right), 1.47\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}^{\prime} \mathrm{Bu}\right), 1.452\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{H}^{\prime} \mathrm{Bu}\right), 1.446\left(\mathrm{~s}, 9 \mathrm{H}^{\prime} \mathrm{H}_{\mathrm{Bu}}\right), 0.93(\mathrm{~d}$,
$\left.3 \mathrm{H}, J=6.7 \mathrm{~Hz}, \mathrm{H}_{16^{\prime \prime}}\right), 0.83\left(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H}_{13^{\prime}}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}) \delta 170.8,170.7,168.6,165.6,164.0,152.4,142.8,140.8$, $137.6,129.1,128.4,128.23,128.21,126.1,125.8,125.6,103.8,89.8$, $86.0,83.9,83.4,83.3,83.1,77.0$ (masked by CDCl_{3}), 76.2, 75.3, 74.0, $39.4,38.0,36.6,36.5,36.1,35.8,34.2,30.9,29.2,28.1$ (2 lines), 28.0, $27.9,27.7,21.2,20.6,18.9,13.9$; IR (thin film) $v 3480,2933,1746$, $1458,1370,1279,1254,1158,1118,700 ;$ HRMS (FAB^{+}) calcd for $\mathrm{C}_{57} \mathrm{H}_{82} \mathrm{O}_{16} 1022.5602$, found $1045.5501\left(\mathrm{MNa}^{+}\right)$.

Zaragozic Acid C (1). To a solution of $98(3.0 \mathrm{mg}, 2.9 \mu \mathrm{~mol})$ in 1.5 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added $500 \mu \mathrm{~L}$ of trifluoroacetic acid. The reaction was stirred for 16 h , after which time the volatiles were removed in vacuo. The resulting pale brown residue was dissolved in toluene (5 mL), concentrated in vacuo, and lyophilized from 2 mL of benzene to afford $2.2 \mathrm{mg}(100 \%)$ of $\mathbf{1}$ as a white flocculent solid: TLC $R_{f}=0.34\left(6: 1 \mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}\right)$; HPLC $t_{\mathrm{R}}=12.03 \pm 0.5 \mathrm{~min}$ (reverse phase, $20 \% \mathrm{CH}_{3} \mathrm{CN}$ in 0.1% aqueous $\mathrm{H}_{3} \mathrm{PO}_{4}$ initially, graded to 95% $\mathrm{CH}_{3} \mathrm{CN}$ over 20 min$) ;[\alpha]_{\mathrm{Na}}+9.0^{\circ}(c=0.23, \mathrm{EtOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, $500 \mathrm{MHz}) \delta 7.25-7.21\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.15-7.10\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 6.23$ (d, $\left.1 \mathrm{H}, J=1.8 \mathrm{~Hz}, \mathrm{H}_{6}\right), 5.37\left(\mathrm{dt}, 1 \mathrm{H}, J=15.3,6.1 \mathrm{~Hz}, \mathrm{H}_{4^{\prime \prime}}\right), 5.30$ (dd, $\left.1 \mathrm{H}, J=15.4,7.5 \mathrm{~Hz}, \mathrm{H}_{s^{\prime \prime}}\right), 5.23\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{3}\right), 4.90-4.86\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}^{\prime}\right.$ masked by $\mathrm{CD}_{3} \mathrm{OH}$ signal), $4.01\left(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}, \mathrm{H}_{7}\right), 2.73$ (dd, $\left.1 \mathrm{H}, J=13.3,5.6 \mathrm{~Hz}, \mathrm{H}_{6^{\prime}}\right), 2.58-2.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{9^{\prime \prime}}\right), 2.37-2.32(\mathrm{~m}$, $\left.3 \mathrm{H}, \mathrm{H}_{6^{\prime}}, \mathrm{H}_{2^{\prime \prime}}\right), 2.28-2.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{3^{\prime \prime}}\right), 2.09-2.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{5^{\prime}}, \mathrm{H}_{6^{\prime \prime}}\right)$, $2.05\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{COCH}_{3}\right), 1.91-1.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{1^{\prime}}\right), 1.69-1.66(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{H}_{3^{\prime}}$), $1.61-1.53\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{2^{\prime}}, \mathrm{H}_{8^{\prime \prime}}\right), 1.31-1.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{7^{\prime \prime}}\right), 0.93$ (d, $\left.3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{H}_{16^{\prime \prime}}\right), 0.86\left(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{H}_{13^{\prime}}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right) \delta 173.1,173.0,172.6,170.2,168.6,143.9,142.0$, $138.8,130.2,129.4,129.28,129.26,127.6,126.9,126.6,107.1,91.0$, $82.3,81.2,78.2,76.7,75.6,40.5,39.7,37.8,37.6,36.9,36.3,35.4$, $32.5,30.5,28.8,21.2,21.1,20.1,14.3$; IR (thin film) $v 3456$ (br), 2928, $1732,1495,1454,1372,1249,1148,1028,969,746,700$; HRMS (FAB^{+}) calcd for $\mathrm{C}_{40} \mathrm{H}_{50} \mathrm{O}_{14} 754.3198$, found $777.3098\left(\mathrm{MNa}^{+}\right.$).

Acknowledgment. J.D.B. gratefully acknowledges the NSF for a predoctoral fellowship. We kindly thank Mary S. Shepard for careful proofreading of this manuscript. This research has been supported by a Beckman Young Investigator Award, Camille and Henry Dreyfus Foundation, The Petroleum Research Fund (ACS PRF 27091-G1), the National Science Foundation, and gifts from the Medicinal Chemistry Research Unit at The Upjohn Co. and Merck.
JA950945U

[^0]: ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, July 15, 1995.
 (1) For leading references on the recent isolation, see: (a) Wilson, K. E.; Burk, R. M.; Biftu, T.: Ball, R. G.; Hoogsteen, K. J. Org. Chem. 1992, 57, 7151. (b) Sidebottom, P. J.; Highcock, R. M.; Lane, S. J.; Procopiou, P. A.; Watson, N. S. J. Antibiot. 1992, 45, 648. (c) Dufresne, C.; Wilson, K. E.; Zink, D.; Smith, J.; Bergstrom, J. D.; Kurtz, M.; Rew, D.; Nallin, M.; Jenkins, R.; Bartizal, K.; Trainor, C.; Bills, G.; Meinz, M.; Huang, L.; Onishi, J.; Milligan, J.; Mojena, M.; Pelaez, F. Tetrahedron 1992, 48, 10221. (d) Dufresne, C.; Wilson, K. E.; Singh, S. B.; Zink, D. L.; Bergstrom, J. D.; Rew, D.; Polishook, J. D.; Meinz, M.; Huang, L. Y.; Silverman. K. C.; Lingham, R. B.; Mojena, M.; Cascales, C.; Pelaez, F.; Gibbs, J. B. J. Nat. Prod. 1993, 56, 1923.
 (2) Nineteen additional squalestatins containing different alkyl and O-acyl side chains as well as the first report of five related structures containing the 6-deoxy-, 7-deoxy-, or 6,7-dideoxydioxabicyclooctane core have been recently described: Blows, W. M.; Foster, G.; Lane, S. J.; Noble, D.; Piercy, J. E.; Sidebottom, P. J.; Webb, G. J. Antibiot. 1994, 47, 740.
 (3) (a) Dawson, M. J.; Farthing, J. E.; Marshall, P. S.; Middleton, R. F.; O'Neil, M. J.; Shuttleworth, A.; Stylli, C.; Tait, R. M.; Taylor, P. M.; Wildman, H. G.; Buss, A. D.; Langley, D.; Hayes, M. V. J. Antibiot. 1992, 45, 639. (b) Baxter, A.; Fitzgerald, B. J.; Hutson, J. L.; McCarthy, A. D.; Motteram, J. M.; Ross, B. C.; Sapra, M.; Snowden, M. A.; Watson, N. S.; Williams, R. J.; Wright, C. J. Biol. Chem. 1992, 267, 11705. (c) Hasumi, K.; Tachikawa, K.; Sakai, K.; Murakawa, S.; Yoshikawa, N.; Kumazawa, S.; Endo, A. J. Antibiot. 1993, 46, 689. (d) Bergstrom, J. D.; Kurtz, M. M.; Rew, D. J.; Amend, A. M.; Karkas, J. D.; Bostedor, R. G.; Bansal, V. S.; Dufresne, C.; VanMiddlesworth, F. L.; Hensens, O. D.; Liesch, J. M.; Zink, D. L.; Wilson, K. E.; Onishi, J.; Milligan, J. A.; Bills, G.; Kaplan, L.; NallinOmstead, M.; Jenkins, R. G.; Huang, L.; Meinz, M. S.; Quinn, L.; Burg, R. W.; Kong, Y. L.; Mochales, S.; Mojena, M.; Martin, I.; Pelaez, F.; Diez, M. T.; Alberts, A. W. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 80. (e) Lindsey, S.; Harwood, H. J., Jr. J. Biol. Chem. 1995, $270,9083$.
 (4) This work has been previously communicated: Carreira, E. M.; Du Bois, J. J. Am. Chem. Soc. 1994, I16, 10825.

[^1]: (5) Hensens, O. D.; Dufresne, C.; Liesch, J. M.; Zink, D. L.; Reamer, R. A.; VanMiddlesworth, F. Tetrahedron Lett. 1993, 34, 399.
 (6) Byme, K. M.; Arison, B. H.; Nallin-Omstead, M.; Kaplan, L. J. Org. Chem. 1993, 58, 1019.
 (7) Reports of model studies directed toward the total synthesis of the zaragozic acids/squalestatins include the following: (a) Caron, S.; McDonald, A. I.; Heathcock, C. H. J. Org. Chem. 1995, 60, 2780. (b) Kraus, G. A.; Maeda, H. J. Org. Chem. 1995, 60, 2. (c) Gujar, M. K.; Das, S. K.; Sadalapure, K. S. Tetrahedron Lett. 1995, 36, 1933. (d) Gujar, M. K.; Das, S. K.; Kunwar, A. C. Tetrahedron Lett. 1995, 36, 1937. (e) Gurjar, M. K.; Das, S. K.; Saha, U. K. Tetrahedron Lett. 1994, 35, 2241. (f) Brzezinski, L. J.; Levy, D. D.; Leahy, J. W. Tetrahedron Lett. 1994, 35, 7601. (g) Abdel-Rahman, H.; Adams, J. P.; Boyes, A. L.; Kelley, M. J.; Lamont, R. B.; Mansfield, D. J.; Procopiou, P. A.; Roberts, S. M.; Slee, D. H.; Watson, N. S. J. Chem. Soc., Perkin Trans. 1 1994, 1259. (h) McVinish, L. M.; Rizzacasa, M. A. Tetrahedron Lett. 1994, 35, 923. (i) Aggarwal, V. K.; Wang, M. F.; Zaparucha, A. J. Chem. Soc., Chem. Commun. 1994, 87 . (j) Abdel-Rahman, H.; Adams, J. P.; Boyes, A. L.; Kelly, M. J.; Mansfield, D. J.; Procopiou, P. A.; Roberts, S. M.; Slee, D. H.; Watson, N. S. J. Chem. Soc., Chem. Commun. 1993, 1839. (k) Abdel-Rahman, H.; Adams, J. P.; Boyes, A. L.; Kelly, M. J.; Mansfield, D. J.; Procopiou, P. A.; Roberts, S. M.; Sidebottom, P. J.; Sik, V.; Slee, D. H.; Watson, N. S. J. Chem. Soc., Chem. Commun. 1993, 1841.

[^2]: (8) For the preparation of analogs by directed biosynthesis, see: (a) Chen, T. S.; Petuch, B.; MacConnell, J.; White, R.; Dezeny, G.; Arison, B.; Bergstrom, J. D.; Colwell, L.; Huang, L.; Monaghan, R. L. J. Antibiot. 1994, 47, 1290. (b) Cannell, R. J. P.; Dawson, M. J.; Hale, R. S.; Hall, R. M.; Noble, D.; Lynn, S.; Taylor, N. L. J. Antibiot. 1994, 47, 247.
 (9) For reports on the synthesis of the zaragozic acid side chains, see: (a) Robichaud, A. J.; Berger, G. D.; Evans, D. A. Tetrahedron Lett. 1993, 34, 8403. (b) Santini, C.; Ball, R. G.; Berger, G. D. J. Org. Chem. 1994, 59, 2261. (c) Parsons, J. G.; Rizzacasa, M. A. Tetrahedron Lett. 1994, 35, 8263.
 (10) Zaragozic acid A/squalestatin Sl, see: (a) Nicolaou, K. C.; Yue, E. W.; Naniwa, Y.; De Riccardis, F.; Nadin, A.; Leresche, J. E.; La Greca, S.; Yang, Z. Angew. Chem., Int. Ed. Engl. 1994, 33, 2184. (b) Nicolaou, K. C.; Nadin, A.; Leresche, J. E.; La Greca, S.; Tsuri, T.; Yue, E. W.; Yang, Z. Angew. Chem., Int. Ed. Engl. 1994, 33, 2187. (c) Nicolaou, K. C.; Nadin, A.; Leresche, J. E.; Yue, E. W.; La Greca, S. Angew. Chem., Int. Ed. Engl. 1994, 33, 2190.
 (11) Zaragozic acid C, see: Evans, D. A.; Barrow, J. C.; Leighton, J. L.; Robichaud, A. J.; Sefkow, M. J. J. Am. Chem. Soc. 1994, 116, 12111.
 (12) The zaragozic acids have also been investigated as inhibitors of farnesyl-protein transferase: (a) Gibbs, J. B.; Pompliano, D. L.; Mosser, S. D.; Rands, E.; Lingham, R. B.; Singh, S. B.; Scolnick, E. M.; Kohl, N. E.; Oliff, A. J. Biol. Chem. 1993, 268, 7617. (b) Tamanoi, F. Trends Biochem. Sci. 1993, 18, 349.

[^3]: (18) Cohen, N.; Banner, B. L.; Lopresti, R. J.; Wong, F.; Rosenberger M.; Liu, Y.-Y.; Thom, E.; Liebmann, A. A. J. Am. Chem. Soc. 1983, IO5, 3661. D-Araboascorbic acid is available from Aldrich Chemical Co.
 (19) The stereochemistry of the major product was assumed to be as shown on the basis of a chelation-controlled addition. This was established unambiguously by 1 H NMR NOE difference experiments following cyclization to the dioxabicyclooctane core; see Scheme 5 and Figure 9.

[^4]: (20) (a) Still, W. C.; McDonald, J. H. Tetrahedron Lett. 1980, 21, 1031. (b) For a recent review of chelation-controlled additions to carbonyl compounds, see: Reetz, M. T. Acc. Chem. Res. 1993, 26, 462. (c) The preference for 1,2 -chelates over 1,3 -chelates has been noted: Ida, H ; Yamazaki, N.; Kibayashi, C. J. Org. Chem. 1986, 51, 3769. Chen, X.; Hortelano, E. R.; Eliel, E. L.; Frye, S. V. J. Am. Chem. Soc. 1992, 114, 1778.
 (21) Evans and co-workers have made a related observation in which a 1,2-chelate is assumed to be preferred over a 1,3-chelate; see ref 11 .

[^5]: (22) (a) Anh, N. T.; Eisenstein, O. Nouv. J. Chim. 1977, 1, 61. (b) Reetz, M. T.; Hullmann, M.; Seitz, T. Angew. Chem., Int. Ed. Engl. 1987, 26, 477.
 (23) For selective ozonolysis of vinyl ethers over other alkenes or alkynes, see: (a) Clark, R. D.; Heathcock, C. H. J. Org. Chem. 1976, 46, 1396. (b) Veysoglu, T.; Mitscher, L. A.; Swayze, J. K. Synthesis 1980, 807.
 (24) (a) Evans, D. A.; Bartroli, J.; Shih, T. L. J. Am. Chem. Soc. 1981, 103, 2127. (b) Evans, D. A.; Nelson, J. V.; Vogel, E.; Taber, T. R. J. Am. Chem. Soc. 1981, 103, 3099.

[^6]: (25) Evans, D. A.; Britton, T. C.; Ellman, J. A. Tetrahedron Lett. 1987, 28, 6141 .
 (26) Eis, M. J.; Wrobel, J. E.; Ganem, B. J. Am. Chem. Soc. 1984, 106, 3693.
 (27) Mancuso, A. J.; Swern, D. Synthesis 1981, 165
 (28) For a review of organolanthanide chemistry, see: Molander, G. A. Chem. Rev. 1992, 92, 29.

[^7]: (29) Attempts to couple an aldehyde or an acid chloride with the alkenylmetal species derived from hydrostannylation, hydrozirconation, or hydrozincanation of acetylene 22 did not provide any of the allylic alcohol or enone product, respectively. For reports of palladium-catalyzed hydrostannylation and alkenylstannane coupling to acid chlorides, see: (a) Zhang, H. X.; Guibe, F.; Balavoine, G. J. Org. Chem. 1990, 55, 1857. (b) Farina, V.; Krishnan, B. J. Am. Chem. Soc. 1991, 113, 9585. For reports of additions of alkenylzirconocene reagents to aldehydes catalyzed by AgClO_{4}, see: (c) Maeta, H.; Hashimoto, T.; Hasegawa, T.; Suzuki, K. Tetrahedron Lett. 1992, 33, 5965. Transmetalations of alkenylzirconocenes with either CuBrSMe 2 or AlCl_{3} and subsequent coupling to acid chlorides have been documented: (d) Wipf, P.; Xu, W. Synlett 1992, 718. (e) Carr, D. B.; Schwartz, J. J. Am. Chem. Soc. 1977, 99, 638. Addition of alkenylzinc reagents (derived by transmetalation of alkenylboranes) to aldehydes has been reported: (f) Oppolzer, W.; Radinov, R. N. Helv. Chim. Acta 1992, 75, 170. (g) Screbnik, M. Tetrahedron Lett. 1991, 32, 2449.
 (30) van Rijn, P. E.; Mommers, S.; Visser, R. G.; Verkruijsse, H. D.; Brandsma, L. Synthesis 1981, 459.
 (31) (a) Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48, 4156. (b) For an excellent procedure for the preparation of multigram quantities of the Dess-Martin reagent, see: Ireland, R. E.; Liu, L. J. Org. Chem. 1993, 58, 2899.
 (32) For the reduction of ynones with CrSO_{4} and CrCl_{2}, see: (a) Smith, A. B., III; Levenberg, P. A.; Suits, J. Z. Synthesis 1986, 184. For reduction of alkynols with Cr(II), see: (b) Castro, C. E.; Stephens, R. D. J. Am. Chem. Soc. 1964, 86, 4358.
 (33) (a) A procedure for in situ preparation of CrSO_{4} is described in ref 32a. (b) For the preparation and isolation of solid CrSO_{4}, see: Lux, H .; Illmann, G. Chem. Ber. 1958, 91, 2143.
 (34) $\left[\mathrm{Cr}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right]_{2}$ has been used to reduce α-haloketones and α-haloketoximines: (a) Williamson, K. L.; Johnson, W. S. J. Org. Chem. 1961, 26, 4563. (b) Corey, E. J.; Richman, J. E. J. Am. Chem. Soc. 1970, 92,5276. [$\left.\mathrm{Cr}(\mathrm{OAc})_{2} \mathrm{H}_{2} \mathrm{O}\right]_{2}$ is currently sold by Aldrich Chemical Co.
 (35) VanRheenen, V.; Kelly, R. C.; Cha, D. Y. Tetrahedron Lett. 1976, 17, 1973.

[^8]: (36) In each of the dihydroxylations examined, the products were cyclized to the dioxabicyclooctane ketal by treatment with $0.5 \% \mathrm{HCl} / \mathrm{MeOH}$, and the ratio of diastereomers was determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy of the unpurified ketal products (yield 85-95\%).
 (37) For a recent discussion of the asymmetric dihydroxylation reaction, see: Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483 and references therein.
 (38) (a) Sharpless has described a protocol for the dihydroxylation of α, β-unsaturated ketones with either (DHQD$)_{2} \mathrm{PHAL}$ or $(\mathrm{DHQ})_{2} \mathrm{PHAL}$ and $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}$ as the reoxidant: Walsh, P. J.; Sharpless, K. B. Synlett 1993, 605 . When 45 was subjected to these conditions, no reaction was observed following 1 month of stirring. (b) We are grateful to Professor K. Barry Sharpless (Scripps Research Institute) for helpful discussions and for providing additional ligands for study.

[^9]: (39) The dramatic effect of an allylic p-methoxybenzoyl ester on the enantioselectivity of olefin dihydroxylation by OsO_{4} has been reported: Corey, E. J.; Guzman-Perez, A.; Noe, M. C. J. Am. Chem. Soc. 1994, 116, 12109.

[^10]: (40) $\mathrm{Pd}-\mathrm{CaCO}_{3}$ was a necessary additive; in its absence, the TBS

[^11]: (41) (a) Hudrlik, P. F.; Peterson, D. Tetrahedron Lett. 1974, 15, 1133. (b) Burford, C.; Cooke, F.; Roy, G.; Magnus, P. Tetrahedron 1983, 39, 867.
 (42) (a) Greenwald, R.; Chaykovsky, M.; Corey, E. J. J. Org. Chem. 1963, 28, 1128. (b) Pirrung, M. C. J. Am. Chem. Soc. 1979, 101, 7130. (c) Corey, E. J.; Smith, J. G. J. Am. Chem. Soc. 1979, 101, 1038. (d) Still, W. C.; Tsai, M.-Y. J. Am. Chem. Soc. 1980, 102, 3654. (e) Fitjer, L.; Quabeck, U. Synth. Commun. 1985, 15, 855.
 (43) (a) Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. J. Am. Chem. Soc. 1978, 100, 3611. (b) Pine, S. H.; Pettit, R. J.; Geib, G. D.; Cruz, S. G.; Gallego, C. H.; Tijerina, T.; Pine, R. D. J. Org. Chem. 1985, 50, 1212.
 (44) (a) Takai, K.; Hotta, Y.; Oshima, K.; Nozaki, H. Tetrahedron Lett. 1978, 19, 2417. (b) Lombardo, L. Org. Synth. 1987, 65, 81.
 (45) (a) Corey, E. J.; Ohno, M.; Mitra, R. B.; Vatakencherry, P. A. J. Am. Chem. Soc. 1964, 86, 478. (b) Paquette, L. A.; Poupart, M.-A. J. Org. Chem. 1993, 58, 4245.
 (46) Under the conditions of the elimination, cleavage of both the $\mathrm{C}(10)$ OTBS and C(6)-OPiv protecting groups was observed. The reason for the selective cleavage of these protecting groups is unclear at present. Reprotection with TBSOTf afforded 62.

[^12]: (47) (a) Chiu, C. K.-F.; Govindan, S. V.; Fuchs, P. L. J. Org. Chem. 1994, 59, 311. (b) Smith, A. B., III; Boschelli, D. J. Org. Chem. 1983, 48, 1217. (c) Corey, E. J.; Danheiser, R. L.; Chandrasekaran, S.; Siret, P.; Keck, G. E.; Grass, J. L. J. Am. Chem. Soc. 1978, 100, 8031. (d) Murray, T. P.; Singh, U. P.; Brown, R. K. Can. J. Chem. 1971, 49, 2132. (e) Cross, B. E. J. Chem. Soc. C 1966, 501. Dihydroxylation of a related, all-carbon [3.2.1] ring system was reported to give the product arising exclusively from osmylation of the concave face, similar to our observations: Ireland, R. E.; Dow, W. C.; Godfrey, J. D.; Thaisrivongs, S. J. Org. Chem. 1984, 49, 1001
 (48) Preliminary results of this work have been previously communicated: Carreira, E. M.; Du Bois, J. Tetrahedron Lett. 1995, 36, 1209.
 (49) For the use of AgNO_{3} in the deprotection of silylacetylenes, see: Schmidt, H. M.; Arens, J. F. Recl. Trav. Chim. Pays-Bas 1967, 86, 1138. (50) Addition of either $\mathrm{TMSC} \equiv \mathrm{CMgBr}$ or the alkynylmetal reagents derived by transmetalation of the lithium acetylide with $\mathrm{CeCl}_{3}, \mathrm{Me}_{3} \mathrm{Al}$, $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{YbCl}_{3}$, or $\mathrm{Ti}(\mathrm{O}-i-\mathrm{Pr})_{4}$ resulted in extensive decomposition of the starting material 61.

[^13]: (51) For a discussion of the structure and reactivity of enolates as related to their aggregation phenomena, see: Seebach, D. Angew. Chem., Int. Ed. Engl. 1988, 27, 1624.
 (52) The effect of $\mathrm{Et}_{3} \mathrm{~N}$ and TMEDA on diastereoselective Grignard additions to chiral keto oxazolines has been documented: Meyers, A. I.; Slade, J. J. Org. Chem. 1980, 45, 2785.
 (53) (a) Schubert, B.; Weiss, E. Angew. Chem., Int. Ed. Engl. 1983, 22, 496. (b) Schubert, B.; Weiss, E. Chem. Ber. 1983, 116, 3212. (c) Seebach, D.; Hässig, R.; Gabriel, J. Helv. Chim. Acta 1983, 66, 308.
 (54) (a) Hässig, R.; Seebach, D. Helv. Chim. Acta 1983, 66, 2269. (b) Bauer, W.; Seebach, D. Helv. Chim. Acta 1984, 67, 1972.
 (55) (a) Fraenkel, G.; Pramanik, P. J. Chem. Soc., Chem. Commun. 1983, 1527. (b) Fraenkel, G. Polym. Prepr., Am. Chem. Soc. Div. Polym. Chem. 1986, 27, 132. (c) The crystal structure of $[t-\mathrm{BuC} \equiv \mathrm{CLi} \cdot \mathrm{THF}]_{4}$ has been reported: Geissler, M.; Kopf, J.; Schubert, B.; Weiss, E.; Neugebauer, W.; von Rague Schleyer, P. Angew. Chem., Int. Ed. Engl. 1987, 26, 587.

[^14]: (56) A small NOE was observed ($<3 \%$) from the $\mathrm{C}(6)-\mathrm{H}$ methine to the tertiary OH in the undesired diastereomer 66.
 (57) The use of Dibal- H in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /toluene proved to be critical for the successful cleavage of the pivaloate esters. Reactions in either THF or $\mathrm{Et}_{2} \mathrm{O}$ failed to remove all three pivaloates.

[^15]: (58) (a) Lindgren, B. O.; Nilsson, T. Acta. Chem. Scand. 1973, 27, 888. (b) Kraus, G. A.; Taschner, M. J. J. Org. Chem. 1980, 45, 1175 . (c) Kraus, G. A.; Roth, B. J. Org. Chem. 1980, $45,4825$.
 (59) For a review of the synthetic application of isoureas, see: Mathias, L. J. Synthesis 1979, 561.
 (60) For the preparation of HF-pyridine buffered with excess pyridine in THF, see: Trost, B. M.; Caldwell, C. G.; Murayama, E.; Heissler, D. J. Org. Chem. 1983, 48, 3252.
 (61) Robinson, R. A.; Clark, J. S.; Holmes, A. B. J. Am. Chem. Soc. 1993, 115, 10400.

[^16]: (63) Corey, E. J.; Katzenellenbogen, J. A.; Posner, G. H. J. Am. Chem. Soc. 1967, 89, 4245.
 (64) Gao, Y.; Hanson, R. M.; Klunder, J. M.; Ko, S. Y.; Masamune, H.; Sharpless, K. B. J. Am. Chem. Soc. 1987, 109, 5765.
 (65) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512.
 (66) (a) Suzuki, T.; Saimoto, H.; Tomioka, H.; Oshima, K.; Nozaki, H. Tetrahedron Lett. 1982, 23, 3597. (b) Roush, W. R.; Adam, M. A.; Peseckis, S. M. Tetrahedron Lett. 1983, 24, 1377.
 (67) We are grateful to Drs. Gregory Berger and Albert Robichaud (Merck Research Laboratories) for generously providing the tris-tert-butyl ester of zaragozic acid A.

[^17]: (68) Schwesinger, R.; Schlemper, H. Angew. Chem., Int. Ed. Engl. 1987, 26, 1167.
 (69) The ratio of $95: 96$ was dependent on the extent of conversion of 92.
 (70) We speculated that the bulkier acylating agent generated with 4-pyrrolidinopyridine would be more selective for the less sterically hindered secondary alcohol at $\mathrm{C}(7)$.
 (71) In practice, a higher yield of the desired product was isolated when the reaction was performed in a two-step sequence.
 (72) We thank Dr. Conrad Santini (Merck Research Laboratories) for generously providing us with an authentic sample of zaragozic acid C .

[^18]: (73) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923

